1 I Articles Dans Des Revues Avec Comité De Lecture

Total Page:16

File Type:pdf, Size:1020Kb

1 I Articles Dans Des Revues Avec Comité De Lecture 1 I Articles dans des revues avec comité de lecture (ACL) internationales II Articles dans des revues sans comité de lecture (SCL) NB : La liste des publications est donnée de façon exhautive par équipe, ce qui signifie qu’il existe des redondances chaque fois qu’une publication est cosignée pas des membres dépendant d’équipes différentes. Par contre, certains chercheurs sont à cheval sur deux équipes, dans ce cas il leur a été demandé de rattacher leurs publications seulement à l’une ou à l’autre équipe en fonction de la nature de la publication et la raison de leur rattachement à deux équipes. I Articles dans des revues avec comité de lecture (ACL) internationales ANNÉE 2006 A / Equipe « Physique des galaxies » 1. Aguilar, J.A. et al. (the ANTARES collaboration, 214 auteurs). First results of the Instrumentation Line for the deep- sea ANTARES neturino telescope Astroparticle Physic 26, 314 2. Auld, R.; Minchin, R. F.; Davies, J. I.; Catinella, B.; van Driel, W.; Henning, P. A.; Linder, S.; Momjian, E.; Muller, E.; O'Neil, K.; Boselli, A.; et 18 coauteurs. The Arecibo Galaxy Environment Survey: precursor observations of the NGC 628 group, 2006, MNRAS,.371,1617A 3. Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C. The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569, 2006, ApJ, 651, 811B 4. Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters -2006, PASP, 118, 517 5. Burgarella, D.; Pérez-González, P. G.; Tyler, K. D.; Rieke, G. H.; Buat, V.; Takeuchi, T. T.; Lauger, S.; Arnouts, S.; Ilbert, O.; Barlow, T. A.; Bianchi, L.; Lee, Y.-W.; Madore, B. F.; Malina, R. F.; Szalay, A. S.; Yi, S. K. Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ~ 1, 2006, A&A, 450, 69 6. Chemin, L.; Balkowski, C.; Cayatte, V.; Carignan, C.; Amram, P.; Garrido, O.; Hernandez, O; Marcelin, M.; Adami, C.; Boselli, A.; Boulesteix, J. A Virgo high-resolution Halpha kinematical survey - II. The Atlas, 2006, MNRAS, 366, 812 7. Cortese, L.; Boselli, A.; Buat, V.; Gavazzi, G.; Boissier, S.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Martin, D. C. UV Dust Attenuation in Normal Star-Forming Galaxies. I. EsT.ating the LTIR/LFUV Ratio, 2006, ApJ, 637, 242 8. Cortese, L.; Gavazzi, G.; Boselli, A.; Franzetti, P.; Kennicutt, R. C.; O'Neil, K.; Sakai, S. Witnessing galaxy preprocessing in the local Universe: the case of a star-bursting group falling into Abell 1367?, 2006, A&A, 453, 847 9. Daigle, O.; Carignan, C.; Amram, P.; Hernandez, O; Chemin, L.; Balkowski, C.; Kennicutt, R. - Halpha kinematics of the SINGS nearby galaxies survey, 2006, MNRAS, 367, 469 10. Daigle, O.; Carignan, C.; Hernandez, O; Chemin, L.; Amram, P. Improved 3D Fabry-Perot data reduction techniques, 2006, MNRAS, 368, 1016 11. Dohlen, K., Beuzit, J.-L., Feldt, M., Mouillet, D., Puget P., J. Antichi, Baruffolo, A., Baudoz, P., Berton, A., Boccaletti, A., arbillet, M., harton, J., Claudi, R., Downing, M., Fabron, C., Feautrier, P., Fedrigo, E., Fusco, T., Gach, J.-L., Gratton, R., Hubin, N., Kasper, M., Langlois, M., Longmore, A., Moutou, C., Petit, C., Pragt, J., Rabou, P., Rousset, G., Saisse, M., Schmid, H.-M., Stadler, E., Stamm, D., Turatto, M., Waters, R., Wildi, F. SPIE volume 6269 SPHERE: A Planet Finder instrument for the VLT 12. Downing, M.; Arsenault, R.; Baade, D.; Balard, P.; Bell, R.; Burt, D.; Denney, S.;Feautrier, P.; Fusco, T.; Gach, J.-L.; and 12 coauthors. Custom CCD for adaptive optics applications - High Energy, Optical, and Infrared Detectors for Astronomy II. Edited by Dorn, D. A.; Holland, A. D.. Proceedings of the SPIE, Volume 6276 - 2006, SPIE,.6276, 15 13. Feautrier, P., Stadler, E., Downing, M., Hurrell, S., Wheeler, P., Gach, J.-L., Magnard, Y., Balard, P., Guillaume, C., Hubin, N., Javier Diaz, J., Suske, W., and Jorden, P. SPIE volume 6271, p 281. Thermal modeling of cooled instrument: from the WIRCam IR camera to CCD Peltier cooled compact packages 14. Flores, H.; Hammer, F.; Puech, M.; Amram, P.; Balkowski, C. 3D spectroscopy with VLT/GIRAFFE. I. The true Tully Fisher relationship at z 0.6, 2006, A&A, 455, 107F 15. Folatelli, G., and 24 colleagues (S. Boissier) 2006. SN 2005bf: A Possible Transition Event between Type Ib/c Supernovae and Gamma-Ray Bursts, 2006, ApJ 641, 1039-1050. 2 16. Frew, D. J.; Parker, Qu. A.; Russeil, D. Two new evolved bipolar planetary nebulae in the solar neighbourhood, 2006, MNRAS, 372,1081 17. Gavazzi, G.; O'Neil, K.; Boselli, A.; van Driel, W. H I observations of galaxies. II. The Coma Supercluster - 2006, A&A, 449, 929 18. Gavazzi, G.; Boselli, A.; Cortese, L.; Arosio, I.; Gallazzi, A.; Pedotti, P.; Carrasco, L. Hα surface photometry of galaxies in nearby clusters, 2006, A&A, 446, 839 19. Iglesias-Páramo, J.; Buat, V.; Takeuchi, T. T.; Xu, K.; Boissier, S.; Boselli, A.; Burgarella, D.; Madore, B. F.; Gil de Paz, A.; Bianchi, L.; Barlow, T. A.; Byun, Y.-I.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Jelinski, P. N.; Lee, Y.-W.; Malina, R. F.; Martin, D. C.; Milliard, B.; Morrissey, P. F.; Neff, S. G.; Rich, R. M.; Schiminovich, D.; Seibert, M.; Siegmund, O. H. W.; Small, T.; Szalay, A. S.; Welsh, B. Y.; Wyder, T. K. : Star Formation in the Nearby Universe: The Ultraviolet and Infrared Points of View - 2006, ApJS, 164, 381 20. Ilbert, O.; Lauger, S.; Tresse, L.; Buat, V.; Arnouts, S.; Le Fèvre, O.; Burgarella, D.; Zucca, E.; Bardelli, S.; Zamorani, G.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Picat, J.-P.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Bolzonella, M.; Cappi, A.; Charlot, S.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mathez, G.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pello, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Bondi, M.; Bongiorno, A.; Busarello, G.; Ciliegi, P.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D. : The VIMOS-VLT Deep Survey. Galaxy luminosity function per morphological type up to z = 1.2 - 2006, A&A, 453, 809-815. 21. Inoue, A. K.; Buat, V.; Burgarella, D.; Panuzzo, P.; Takeuchi, T.T.; Iglesias-Páramo, J. Effects of dust scattering albedo and 2175-Å bump on ultraviolet colours of normal disc galaxies, 2006, MNRAS, 626 22. Inoue, A. K.; Iwata, I.; Deharveng, J.-M. The escape fraction of ionizing photons from galaxies at z = 0-6, 2006, MNRAS, 371L, 1 23. Mendes de O., C. L.;Temporin, S.;Cypriano, E. S.;Plana, H.;Amram, P.;Sodré, Laerte, Jr.;Balkowski, C. The K Luminosity-Metallicity Relation for Dwarf Galaxies and the Tidal Dwarf Galaxies in the Tails of HCG 31, 2006, AJ, 132, 570 24. Moretto, G.; Bacon, R.; Cuby,J.-G.; Hammer, F.; Amram, P.; Blais-Ouellette, S.; Blanc, P.-E.; Devriendt, J.; Epinat, B.; Fusco, T.; Jagourel, P.; Hernandez, O; Kneib, J.P.; Montilla, I.; Neichel, J.-P., Pécontal, E.; Prieto, E.; Puech, M. : Wide field spectrograph concepts for the European Extremely Large Telescope - Ground-based and Airborne Instrumentation for Astronomy; Ian S. McLean, Masanori Iye; Eds., 2006, SPIE 6269, 774 25. Pérez-Gonzalez, P.G., and 15 colleagues. Ultraviolet through Far-Infrared Spatially Resolved. Analysis of the Recent Star Formation in M81 (NGC 3031)., 2006, ApJ 648, 987-1006. 26. Rampazzo, R.; Alexander, P.; Carignan, C.; Clemens, M. S.; Cullen, H.; Garrido, O.; Marcelin, M.; Sheth, K.; Trinchieri, G. The hot, warm and cold gas in Arp 227 - an evolving poor group, 2006, MNRAS, 368, 851 27. Parker, Q.A.; Acker, A.; Frew, D. J.; Hartley, M.; Peyaud, A. E. J.; Ochsenbein, F.; Phillipps, S.; Russeil, D.; Beaulieu, S. F.; Cohen, M.; et 6 coauteurs The Macquarie/AAO/Strasbourg Hα Planetary Nebula Catalogue: MASH, 2006, MNRAS, 373, 79P 28. Schawinski, Kevin;Khochfar, Sadegh;Kaviraj, Sugata;Yi, Sukyoung K.;Boselli, A.;Barlow, Tom;Conrow, T.;Forster, Kar l; Friedman, Peter G.; Martin, D. Chris; and 14 coauthors; Suppression of star formation in early-type galaxies by feedback from supermassive black holes, 2006,Natur., 442, 888 29. Xu, C. K.; Buat, V.; Iglesias-Páramo, J.; Takeuchi, T. T.; Barlow, T. A.; Bianchi, L.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Jelinsky, P. N.; Lee, Y.-W.; Madore, B. F.; Malina, R. F.; Martin, D. C.; Milliard, B.; Morrissey, P.; Rich, R. M.; Neff, S. G.; Schiminovich, D.; Siegmund, O. H. W.; Small, T.; Szalay, A. S.; Welsh, B.Y.; Wyder, T. K.; Yi, S. Ultraviolet and Far-Infrared-selected Star-forming Galaxies at z=0: Differences and Overlaps , 2006, ApJ, 646, 834 30. Zavagno, A.; Deharveng, L.; Comerón, F.; Brand, J.; Massi, F.; Caplan, J.; Russeil, D. Triggered massive-star formation on the borders of Galactic H II regions. II. Evidence for the collect and collapse process around RCW 79, 2006, A&A, 446, 171 B / Equipe « Populations stellaires et évolution des galaxies » (PSEG) 1. Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C. : The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569, 2006, ApJ, 651, 811B 2. Burgarella, D.; Pérez-González, P. G.; Tyler, K. D.; Rieke, G. H.; Buat, V.; Takeuchi, T. T.; Lauger, S.; Arnouts, S.; Ilbert, O.; Barlow, T. A.; and 6 coauthors : Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ~ 1, 2006, A&A, 450, 69 3.
Recommended publications
  • Publications for Dr. Peter L. Capak 1 of 21 Publication Summary 369
    Publications for Dr. Peter L. Capak Publication Summary 369 Publications 319 Refereed Publications Accepted or Submitted 50 Un-refereed Publications Top 1% of Cited Researchers in 2017-2019 >30,000 Citations >1,600 Citations on first author papers 99 papers with >100 citations, 6 as first author. H Index = 99 First Author publications 1) Capak et al., 2015, “Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission”, Nature, 522, 455 2) Capak et al., 2013, “Keck-I MOSFIRE Spectroscopy of the z ~ 12 Candidate Galaxy UDFj-39546284”, ApJL, 733, 14 3) Capak et al., 2011, “A massive protocluster of galaxies at a redshift of z~5.3” , Nature, 470, 233 4) Capak et al., 2010, “Spectroscopy and Imaging of three bright z>7 candidates in the COSMOS survey”, ApJ, 730, 68 5) Capak et al., 2008, "Spectroscopic Confirmation Of An Extreme Starburst At Redshift 4.547", ApJL, 681, 53 6) Capak et. al., 2007, "The effects of environment on morphological evolution between 0<z<1.2 in the COSMOS Survey", ApJS, 172, 284 7) Capak et. al., 2007, "The First Release COSMOS Optical and Near-IR Data and Catalog", ApJS, 172, 99 8) Capak, 2004, “Probing global star and galaxy formation using deep multi-wavelength surveys”, Ph.D. Thesis 9) Capak et. al., 2004, "A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North", AJ, 127, 180 Other Publications (P. Capak was a leading author in bolded entries) 10) Faisst et al., 2020, “The ALPINE-ALMA [CII] survey: Multi-Wavelength Ancillary Data.
    [Show full text]
  • Directed Follow-Up Strategy of Low-Cadence Photometric Surveys In
    Mon. Not. R. Astron. Soc. 000, 1–11 (2011) Printed 5 November 2018 (MN LATEX style file v2.2) Directed follow-up strategy of low-cadence photometric surveys in Search of transiting exoplanets - I. Bayesian approach for adaptive scheduling Yifat Dzigan1⋆ and Shay Zucker1† 1Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv 69978, Israel Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal. Accepted 2011 April 8. ABSTRACT We propose a novel approach to utilize low-cadence photometric surveys for exoplan- etary transit search. Even if transits are undetectable in the survey database alone, it can still be useful for finding preferred times for directed follow-up observations that will maximize the chances to detect transits. We demonstrate the approach through a few simulated cases. These simulations are based on the Hipparcos Epoch Photometry data base, and the transiting planets whose transits were already detected there. In principle, the approach we propose will be suitable for the directed follow-up of the photometry from the planned Gaia mission, and it can hopefully significantly increase the yield of exoplanetary transits detected, thanks to Gaia. Key words: methods: data analysis – methods: observational – methods: statistical – techniques: photometric – surveys – planetary systems. 1 INTRODUCTION 2002). Thus the posterior detections motivated us to re- examine Hipparcos Epoch Photometry data and to look for a The idea to detect transits of exoplanets in the Hip- way to utilize this survey and similar low-cadence photomet- parcos Epoch Photometry (ESA 1997) trigerred several ric surveys, to detect exoplanets. The approach we propose studies that checked the feasibility of such an attempt.
    [Show full text]
  • PUBLICATIONS Publications (As of Dec 2020): 335 on Refereed Journals, 90 Selected from Non-Refereed Journals. Citations From
    PUBLICATIONS Publications (as of Sep 2021): 350 on refereed journals, 92 selected from non-refereed journals. Citations from ADS: 32263, H-index= 97. Refereed 350. Caminha, G.B.; Suyu, S.H.; Grillo, C.; Rosati, P.; et al. 2021 Galaxy cluster strong lensing cosmography: cosmological constraints from a sample of regular galaxy clusters, submitted to A&A 349. Mercurio, A..; Rosati, P., Biviano, A. et al. 2021 CLASH-VLT: Abell S1063. Cluster assembly history and spectroscopic catalogue, submitted to A&A, (arXiv:2109.03305) 348. G. Granata et al. (9 coauthors including P. Rosati) 2021 Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: the case of Abell S1063, submitted to A&A, (arXiv:2107.09079) 347. E. Vanzella et al. (19 coauthors including P. Rosati) 2021 High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z = 2:37, submitted to A&A, (arXiv:2106.10280) 346. M.G. Paillalef et al. (9 coauthors including P. Rosati) 2021 Ionized gas kinematics of cluster AGN at z ∼ 0:8 with KMOS, MNRAS, 506, 385 6 crediti 345. M. Scalco et al. (12 coauthors including P. Rosati) 2021 The HST large programme on Centauri - IV. Catalogue of two external fields, MNRAS, 505, 3549 344. P. Rosati et al. 2021 Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities, Experimental Astronomy, 2021ExA...tmp...79R (arXiv:2104.09535) 343. N.R. Tanvir et al. (33 coauthors including P. Rosati) 2021 Exploration of the high-redshift universe enabled by THESEUS, Experimental Astronomy, 2021ExA...tmp...97T (arXiv:2104.09532) 342.
    [Show full text]
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Apus Constellation Visible at Latitudes Between +5° and -90°
    Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise".
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Highlights and Discoveries from the Chandra X-Ray Observatory1
    Highlights and Discoveries from the Chandra X-ray Observatory1 H Tananbaum1, M C Weisskopf2, W Tucker1, B Wilkes1 and P Edmonds1 1Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138. 2 NASA/Marshall Space Flight Center, ZP12, 320 Sparkman Drive, Huntsville, AL 35805. Abstract. Within 40 years of the detection of the first extrasolar X-ray source in 1962, NASA’s Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Search for Variability and Transit Signatures In
    A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA A thesis presented to the faculty of 3 ^ San Francisco State University Zo\% In partial fulfilment of W* The Requirements for The Degree Master of Science In Physics: Astronomy by Badrinath Thirumalachari San JVancisco, California December 2018 Copyright by Badrinath Thirumalachari 2018 CERTIFICATION OF APPROVAL I certify that I have read A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA by Badrinath Thirumalachari and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Physics: Astronomy at San Francisco State University. fov- Dr. Stephen Kane, Ph.D. Astrophysics Associate Professor of Planetary Astrophysics Dr. Uo&eph Barranco, Ph.D. .%trtJphysics Chairfe Associate Professor of Physics K + A Q , L a . Dr. Ron Marzke, Ph.D. Astronomy Assoc. Dean of College of Science & Engineering A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA Badrinath Thirumalachari San Francisco State University 2018 The study and characterization of exoplanets has picked up pace rapidly over the past few decades with the invention of newer techniques and instruments. Detecting transits in stellar photometric data around stars already known to harbor exoplanets is crucial for exoplanet characterization. Due to these advancements we now have oceans of data and coming up with an automated way of performing exoplanet characterization is a challenge. In this thesis I describe one such method to search for transits in Hipparcos dataset containing photometric data for over 118000 stars. The radial velocity method has discovered a lot of planets around bright host stars and a follow up transit detection will give us the density of the exoplanet.
    [Show full text]
  • New Low-Mass Stellar Companions of the Exoplanet Host Stars HD 125612 and HD 212301 M
    A&A 494, 373–378 (2009) Astronomy DOI: 10.1051/0004-6361:200810639 & c ESO 2009 Astrophysics The multiplicity of exoplanet host stars New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301 M. Mugrauer and R. Neuhäuser Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergäßchen 2-3, 07745 Jena, Germany e-mail: [email protected] Received 18 July 2008 / Accepted 31 October 2008 ABSTRACT Aims. We present new results from our ongoing multiplicity study of exoplanet host stars, carried out with SofI/NTT. We provide the most recent list of confirmed binary and triple star systems that harbor exoplanets. Methods. We use direct imaging to identify wide stellar and substellar companions as co-moving objects to the observed exoplanet host stars, whose masses and spectral types are determined with follow-up photometry and spectroscopy. Results. We found two new co-moving companions of the exoplanet host stars HD 125612 and HD 212301. HD 125612 B is a wide M 4 dwarf (0.18 M) companion of the exoplanet host star HD 125612, located about 1.5 arcmin (∼4750 AU of projected separation) south-east of its primary. In contrast, HD 212301 B is a close M 3 dwarf (0.35 M), which is found about 4.4 arcsec (∼230 AU of projected separation) north-west of its primary. Conclusions. The binaries HD 125612 AB and HD 212301 AB are new members in the continuously growing list of exoplanet host star systems of which 43 are presently known. Hence, the multiplicity rate of exoplanet host stars is about 17%.
    [Show full text]