2007 BGA Amsterdam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mainstream Science on Intelligence: an Editorial with 52 Signatories, History, and Bibliography
EDITORIAL Mainstream Science on Intelligence: An Editorial With 52 Signatories, History, and Bibliography LINDA S. GOTTFREDSON University of Delaware The following statement was first published in the Wall Street Journal, December 13, 1994. Mainstream Science on Intelligence Since the publication of “The Bell Curve,” it reflects a broader and deeper capability for many commentators have offered opinions comprehending our surroundings-“catch- about human intelligence that misstate cur- ing on,” “ making sense” of things, or “figur- rent scientific evidence. Some conclusions ing out” what to do. dismissed in the media as discredited are ac- 2. Intelligence, so defined, can be mea- tually firmly supported. sured, and intelligence tests measure it well. This statement outlines conclusions re- They are among the most accurate (in techni- garded as mainstream among researchers on cal terms, reliable and valid) of all psycho- intelligence, in particular, on the nature, ori- logical tests and assessments. They do not gins, and practical consequences of individu- measure creativity, character, personality, or al and group differences in intelligence. Its other important differences among individu- aim is to promote more reasoned discussion als, nor are they intended to. of the vexing phenomenon that the research 3. While there are different types of intel- has revealed in recent decades. The follow- ligence tests, they all measure the same intel- ing conclusions are fully described in the ligence. Some use words or numbers and major textbooks, professional journals and require specific cultural knowledge (like vo- encyclopedias in intelligence. cabulary). Other do not, and instead use shapes or designs and require knowledge of The Meaning and Measurement of only simple, universal concepts (many/few, Intelligence open/closed, up/down). -
Vrije Universiteit Amsterdam Objects and Their Stories 1985-1990 Nick and Carst and the Netherlands Twin Register
Vrije Universiteit Amsterdam objects and their stories 1985-1990 Nick and Carst and the Netherlands Twin Register There are many research institutes at VU Amsterdam. These institutes often bring together various disciplines around a specific theme. One of the more unusual topics is research on twins, which has been carried out at VU Amsterdam since the 1980s. This institute is represented in the collections in a unique way: with a work of art. Art curator Wende Wallert and Professor Dorret Boomsma from the Twin Institute tell us more. Nick and Carst By Wende Wallert In 2016, photographers Monique Eller and Bodine Koopmans made a series of portraits about the twin phenomenon entitled ‘DOUBLE DUTCH’, in collaboration with the NTR and VU Amsterdam. The results of their work were displayed in an exhibition in the Main Building. Set against a muted background, the portrait of Nick and Carst beautifully reveals their similarities and differences as well as the special bond that twins share. Monique Eller and Bodine Koopmans, Nick and Carst, 2016, VU VU Amsterdam aims to stimulate the interaction Amsterdam Art Collection between art and science. Like science, art offers us new insights, but from the imagination. In its own gallery space called WONDER, VU Amsterdam organises exhibitions and events to share current artistic and scientific research with the public. The Netherlands Twin Register By Dorret Boomsma I began my PhD studies at Vrije Universiteit Amsterdam in 1983, after completing a doctoral programme there and obtaining an MA at the Institute for Behavioural Genetics in Boulder, Colorado. It was in Boulder that I became aware of the value of twin studies. -
ONFERENCE PROG the 13Th International
ONFERENCE PROG C The 13th International Congress on Twin Studies June 4-7, 2010, Seoul, Korea cv mu"' f6ARtt Seoul c.cio4"J' RA7°J2-- U/1 TOURISM ORGANIZATION FRIDAY (JUNE 4) 18:30 -21:00 ICTS Welcome Reception (Regency Room) SATURDAY (JUNE 5) 7:30 - 8:15 Breakfast (Regency Room) Symposium : Genetics of high cognitive abilities Regency Room 815 - 9:45 Organizer: Robert Plomin Robert Plomin & Claire M. A. Haworth 8:15 Genetics of high cognitive abilities : An overview John Hewitt, Angela Brant, Robin Corley, Sally Wadsworth & John DeFries 8:30 A closer look at the developmental etiology of high IQ Matt McGue, Robert M. Kirkpatrick, Michael Miller, & William G. Iacono 8:45 The University of Minnesota Initiative on the Genetics of High Cognitive Ability Allan McRae, Margie Wright, Narelle Hansell, Peter Visscher, Grant Montgomery, & Nicholas G. Martin 9:00 Is high cognitive ability associated with a lower genomic burden of copy number variants? Dorret I. Boomsma, Catherina E.M. van Beijsterveldt, Inge van Soelen , Sanja Franio, Conor V. Dolan, Denny Borsboom,& M. Bartels 9:15 Genetic analysis of longitudinally measured IQ, educational attainment and educational level in Dutch twin-sib samples Paper Session : Twin studies of personality & psychological wellbeing Namsan Ill 8:15 - 9:45 Chair: Corrado Fagnani Christian Kandler, Wiebke Bleidorn, & Rainer Riemann 8:15 Sources of cumulative continuity in personality: A longitudinal multiple-rater twin study Veselka, L., Schermer, J.A., Martin, R. A., & Vernon, P.A. 8:30 The heritability of general factor of personality extracted in four different datasets Antonella Gigantesco, Corrado Fagnani, Guido Alessandri, Emanuela Medda, 8:45 Emanuele Tarolla, & Maria Antonietta Stazi An Italian twin study on psychological well-being in young adulthood Meike Bartels, Gonneke, A.H.M. -
Genetics and Human Behaviour
Cover final A/W13657 19/9/02 11:52 am Page 1 Genetics and human behaviour : Genetic screening: ethical issues Published December 1993 the ethical context Human tissue: ethical and legal issues Published April 1995 Animal-to-human transplants: the ethics of xenotransplantation Published March 1996 Mental disorders and genetics: the ethical context Published September 1998 Genetically modified crops: the ethical and social issues Published May 1999 The ethics of clinical research in developing countries: a discussion paper Published October 1999 Stem cell therapy: the ethical issues – a discussion paper Published April 2000 The ethics of research related to healthcare in developing countries Published April 2002 Council on Bioethics Nuffield The ethics of patenting DNA: a discussion paper Published July 2002 Genetics and human behaviour the ethical context Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Internet: www.nuffieldbioethics.org Cover final A/W13657 19/9/02 11:52 am Page 2 Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Email: [email protected] Website: http://www.nuffieldbioethics.org ISBN 1 904384 03 X October 2002 Price £3.00 inc p + p (both national and international) Please send cheque in sterling with order payable to Nuffield Foundation © Nuffield Council on Bioethics 2002 All rights reserved. Apart from fair dealing for the purpose of private study, research, criticism or review, no part of the publication may be produced, stored in a retrieval system or transmitted in any form, or by any means, without prior permission of the copyright owners. -
Longitudinal Stability of the CBCL-Juvenile Bipolar Disorder Phenotype: a Study in Dutch Twins Dorret I
Longitudinal Stability of the CBCL-Juvenile Bipolar Disorder Phenotype: A Study in Dutch Twins Dorret I. Boomsma, Irene Rebollo, Eske M. Derks, Toos C.E.M. van Beijsterveldt, Robert R. Althoff, David C. Rettew, and James J. Hudziak Background: The Child Behavior Checklist–juvenile bipolar disorder phenotype (CBCL-JBD) is a quantitative phenotype that is based on parental ratings of the behavior of the child. The phenotype is predictive of DSM-IV characterizations of BD and has been shown to be sensitive and specific. Its genetic architecture differs from that for inattentive, aggressive, or anxious–depressed syndromes. The purpose of this study is to assess the developmental stability of the CBCL-JBD phenotype across ages 7, 10, and 12 years in a large population-based twin sample and to examine its genetic architecture. Methods: Longitudinal data on Dutch mono- and dizygotic twin pairs (N ϭ 8013 pairs) are analyzed to decompose the stability of the CBCL-JBD phenotype into genetic and environmental contributions. Results: Heritability of the CBCL-JBD increases with age (from 63% to 75%), whereas the effects of shared environment decrease (from 20% to 8%). The stability of the CBCL-JBD phenotype is high, with correlations between .66 and .77 across ages 7, 10, and 12 years. Genetic factors account for the majority of the stability of this phenotype. There were no sex differences in genetic architecture. Conclusions: Roughly 80% of the stability in childhood CBCL-JBD is a result of additive genetic effects. Key Words: Childhood bipolar affective disorder, genetics, twins disorders (Kahana et al 2003) has been examined across samples, countries, and across methodologies (Althoff et al 2005). -
IBD Estimation in Pedigrees
23rd International Workshop on Statistical Genetics and Methodology of Twin and Family Studies: Advanced course Pak Sham (director) John Hewitt (host) Lindon Eaves Jeff Lessem Jeff Barrett Marleen de Moor David Evans Stacey Cherny Goncalo Abecasis Ben Neale Mike Neale Shaun Purcell Hermine Maes Manuel Ferreira Sarah Medland Nick Martin Dorret Boomsma Kate Morley Danielle Posthuma Allan McRae Meike Bartels Hunting QTLs – an introduction Nick Martin Queensland Institute of Medical Research Boulder workshop: March 2, 2009 Mendel 1865 – genetics of discrete traits Stature in adolescent twins Women 700 600 500 400 300 200 Std. Dev = 6.40 100 Mean = 169.1 0 N = 1785.00 145.0 155.0 165.0 175.0 185.0 150.0 160.0 170.0 180.0 190.0 Stature R.A. Fisher, 1918 The explanation of quantitative inheritance in Mendelian terms 1 Gene 2 Genes 3 Genes 4 Genes 3 Genotypes 9 Genotypes 27 Genotypes 81 Genotypes 3 Phenotypes 5 Phenotypes 7 Phenotypes 9 Phenotypes 3 3 7 20 6 15 2 2 5 4 10 3 1 1 2 5 1 0 0 0 0 Multifactorial Threshold Model of Disease Single threshold Multiple thresholds unaffected affected normal mild mod sever e Disease liability Disease liability Complex Trait Model Linkage Marker Gene1 Linkage disequilibrium Mode of Linkage inheritance Association Gene2 Disease Phenotype Individual environment Gene3 Common environment Polygenic background Using genetics to dissect metabolic pathways: Drosophila eye color Beadle & Ephrussi, 1936 Finding QTLs Linkage Association First (unequivocal) positional cloning of a complex -
Netherlands Twin Register: from Twins to Twin Families
THE NETHERLANDS Netherlands Twin Register: From Twins to Twin Families Dorret I. Boomsma, Eco J. C. de Geus, Jacqueline M. Vink, Janine H. Stubbe, Marijn A. Distel, Jouke-Jan Hottenga, Danielle Posthuma, Toos C. E. M. van Beijsterveldt, James J. Hudziak, Meike Bartels, and Gonneke Willemsen Department of Biological Psychology,Vrije Universiteit,Amsterdam, the Netherlands n the late 1980s The Netherlands Twin Register Rietveld et al., 2000; Stubbe et al., 2005: Vink et al., I(NTR) was established by recruiting young twins and 2004). In this paper we give an update on the ANTR multiples at birth and by approaching adolescent and and YNTR and describe some new developments in young adult twins through city councils. The Adult phenotyping and biobank studies. NTR (ANTR) includes twins, their parents, siblings, spouses and their adult offspring. The number of par- ANTR ticipants in the ANTR who take part in survey and / or laboratory studies is over 22,000 subjects. A special Table 1 offers a summary of the number of family group of participants consists of sisters who are members registered with the ANTR who participated mothers of twins. In the Young NTR (YNTR), data on at least once in one of the surveys or in one of the lab- more than 50,000 young twins have been collected. oratory studies. Families of adolescent and adult Currently we are extending the YNTR by including twins have been extended to include parents, siblings, siblings of twins. Participants in YNTR and ANTR spouses and offspring (over 18 years) of the twins and have been phenotyped every 2 to 3 years in longitudi- siblings. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits Permalink https://escholarship.org/uc/item/50j7w041 Author Kang, Eun Yong Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Eun Yong Kang 2013 c Copyright by Eun Yong Kang 2013 ABSTRACT OF THE DISSERTATION Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits by Eun Yong Kang Doctor of Philosophy in Computer Science University of California, Los Angeles, 2013 Professor Eleazar Eskin, Chair Recent advances in genotyping and sequencing technology have enabled researchers to collect an enormous amount of high-dimensional genotype data. These large scale genomic data provide unprecedented opportunity for researchers to study and analyze the genetic factors of human complex traits. One of the major challenges in analyzing these high-throughput genomic data is requirements for effective and efficient compu- tational methodologies. In this thesis, I introduce several methodologies for analyzing these genomic data which facilitates our understanding of the genetic basis of complex human traits. First, I introduce a method for inferring biological networks from high- throughput data containing both genetic variation information and gene expression profiles from genetically distinct strains of an organism. For this problem, I use causal inference techniques to infer the presence or absence of causal relationships between yeast gene expressions in the framework of graphical causal models. -
Softly, Softly Gillborn, David
University of Birmingham Softly, softly Gillborn, David DOI: 10.1080/02680939.2016.1139189 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Gillborn, D 2016, 'Softly, softly: genetics, intelligence and the hidden racism of the new geneism', Journal of Education Policy, vol. 31, no. 4, pp. 365-388. https://doi.org/10.1080/02680939.2016.1139189 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Gillborn, David. "Softly, softly: genetics, intelligence and the hidden racism of the new geneism." Journal of Education Policy (2016): 1-24. on 1st Feb 2016, available online: http://www.tandfonline.com/10.1080/02680939.2016.1139189 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
An Analysis of Two Genome-Wide Association Meta-Analyses Identifies a New Locus for Broad Depression Phenotypea Susceptibility Locus for Broad Depression Phenotype
Author’s Accepted Manuscript An Analysis of Two Genome-Wide Association Meta-Analyses Identifies a New Locus for Broad Depression PhenotypeA Susceptibility Locus for Broad Depression Phenotype Nese Direk, Stephanie Williams, Jennifer A. Smith, Stephan Ripke, Tracy Air, Azmeraw T. Amare, Najaf Amin, Bernhard T. Baune, David A. Bennett, www.elsevier.com/locate/journal Douglas H.R. Blackwood, Dorret Boomsma, Gerome Breen, Henriette N. Buttenschøn, Enda M. Byrne, Anders D. Børglum, Enrique Castelao, Sven Cichon, Toni-Kim Clarke, Marilyn C. Cornelis, Udo Dannlowski, Philip L. De Jager, Ayse Demirkan, Enrico Domenici, Cornelia M. van Duijn, Erin C. Dunn, Johan G. Eriksson, Tonu Esko, Jessica D. Faul, Luigi Ferrucci, Myriam Fornage, Eco de Geus, Michael Gill, Scott D. Gordon, Hans Jörgen Grabe, Gerard van Grootheest, Steven P. Hamilton, Catharina A. Hartman, Andrew C. Heath, Karin Hek, Albert Hofman, Georg Homuth, Carsten Horn, Jouke Jan Hottenga, Sharon L.R. Kardia, Stefan Kloiber, Karestan Koenen, Zoltán Kutalik, Karl-Heinz Ladwig, Jari Lahti, Douglas F. Levinson, Cathryn M. Lewis, Glyn Lewis, Qingqin S. Li, David J. Llewellyn, Susanne Lucae, Kathryn L. Lunetta, Donald J. MacIntyre, Pamela Madden, Nicholas G. Martin, Andrew M. McIntosh, Andres Metspalu, Yuri Milaneschi, Grant W. Montgomery, Ole Mors, Thomas H. Mosley, Joanne M. Murabito, Bertram Müller-Myhsok, Markus M. Nöthen, Dale R. Nyholt, Michael C. O’Donovan, Brenda W. Penninx, Michele L. Pergadia, Roy Perlis, James B. Potash, Martin Preisig, Shaun M. Purcell, Jorge A. Quiroz, Katri Räikkönen, John P. Rice, Marcella Rietschel, Margarita Rivera, Thomas G. Schulze, Jianxin Shi, Stanley Shyn, Grant C. Sinnamon, Johannes H. Smit, Jordan W. -
Sydney, Australia
Behavior Genetics Association 23rd Annual Meeting Sydney, Australia 100 lelosramerirrm July 13-16,1993 Behavior Genetics Association 0 The purpose of the Behavior Genetics Association is to promote scientific study of the interrela- tionship of genetic mechanisms and behavior, both human and animal; to encourage and aid the E training of research workers in the field of behavior genetics; and to aid in the dis- O education and C semination and interpretation to the general public of knowledge concerning the interrelationship of genetics and behavior, and its implications for health and human development and education. 00000000000 For additional information about the Behavior Genetics Association, please contact Dr. George Vogler, BGA Secretary, Division of Biostatistics, Washington University School of Medicine, Box 8067, 660 S. Euclid Avenue, St. Louis, MO 63110. Executive Committee 1992-1993 1993-1994 President David A. Blizard Thomas J. Bouchard, Jr. President-elect Thomas J. Bouchard, Jr. Glayde Whitney Past President Lindon J. Eaves David A. B lizard Secretary George Vogler George Vogler Treasurer Laura Baker Sheri A. Berenbaum M. Meyer Member-at-large Peter Driscoll Joanne Tamara J. Phillips Member-at-large Joanne M. Meyer Wim E. Crusio Member-at-large Tamara J. Phillips Previous Previous Local Hosts Presidents Dobzhansky A wardeess 1977 Richard Osborne/Benson 1971 Th. Dobzhansky 1972-73 Steven G. Vandenberg 1978 Ginsburgh Univer. Conn. John L. Fuller 1973-74 Elliott Slater of 1979 Gerald E. McCleam, U of Col 1972 Gerald E. McClearn 1974-75 Ernst W. Caspari 1980 William S. Pollitzer, U of N.C. 1973 J. P. Scott 1975-76 Benson E. -
The New Genetics of Intelligence
Robert Plomin and Sophie von Stumm The new genetics of intelligence Article (Accepted version) (Refereed) Original citation: Plomin, Robert and von Stumm, Sophie (2018) The new genetics of intelligence. Nature Reviews Genetics, 19. pp. 148-159. ISSN 1471-0056 DOI: 10.1038/nrg.2017.104 © 2018 Macmillan Publishers Limited, part of Springer Nature This version available at: http://eprints.lse.ac.uk/86751/ Available in LSE Research Online: May 2018 LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website. This document is the author’s final accepted version of the journal article. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. The new genetics of intelligence Robert Plomin1 and Sophie von Stumm2 1Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK. 2Department of Psychological and Behavioural Science, London School of Economics and Political Science, Queens House, 55/56 Lincoln’s Inn Fields, London WC2A 3LJ, UK.