And Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins Ralf G

Total Page:16

File Type:pdf, Size:1020Kb

And Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins Ralf G University of Kentucky UKnowledge Plant Pathology Faculty Publications Plant Pathology 1-2-2017 The aF mily Rhabdoviridae: Mono- and Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins Ralf G. Dietzgen The University of Queensland, Australia Hideki Kondo Okayama University, Japan Michael M. Goodin University of Kentucky, [email protected] Gael Kurath US Geological Survey Nikos Vasilakis University of Texas FRoigllohtw c licthiks t aond ope addn ait feionedalba wckork fosr mat :inh att nps://uknoew tab to lewtle usdg kne.ukowy .hedu/pow thilasn documtpath_faenct pubbenefits oy u. Part of the Genetics and Genomics Commons, Plant Pathology Commons, and the Viruses Commons Repository Citation Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; and Vasilakis, Nikos, "The aF mily Rhabdoviridae: Mono- and Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins" (2017). Plant Pathology Faculty Publications. 89. https://uknowledge.uky.edu/plantpath_facpub/89 This Review is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Plant Pathology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. The Family Rhabdoviridae: Mono- and Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins Notes/Citation Information Published in Virus Research, v. 227, p. 158-170. © 2016 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. The document available for download is the author's post-peer-review final draft of the ra ticle. Digital Object Identifier (DOI) https://doi.org/10.1016/j.virusres.2016.10.010 This review is available at UKnowledge: https://uknowledge.uky.edu/plantpath_facpub/89 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Virus Res Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 January 02. Published in final edited form as: Virus Res. 2017 January 2; 227: 158–170. doi:10.1016/j.virusres.2016.10.010. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins Ralf G. Dietzgena,*, Hideki Kondob, Michael M. Goodinc, Gael Kurathd, and Nikos Vasilakise aQueensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia bInstitute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan cDepartment of Plant Pathology, University of Kentucky, Lexington KY 40546, USA dU.S. Geological Survey, Western Fisheries Research Centre, Seattle WA, USA eInstitute for Human Infection and Immunity, University of Texas Medical Branch, Galveston TX, 77555, USA Abstract The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes. Graphical abstract *Corresponding author: Ralf G. Dietzgen, QAAFI, The University of Queensland, St. Lucia QLD 4072, Australia, Tel.: +61733466503, Fax: +61733466503, [email protected]. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Dietzgen et al. Page 2 Author ManuscriptAuthor Keywords Manuscript Author Manuscript Author Manuscript Author Rhabdovirus; Negative-sense RNA virus; Genome organization; Diversity; Replication; Taxonomy 1. Introduction – Properties and diversity of rhabdoviruses Rhabdoviruses are a large and ecologically diverse group of viruses, which infect terrestrial and aquatic vertebrates, invertebrates and plants. They include many pathogens of significance to public health, agriculture and fisheries (Dietzgen and Kuzmin, 2011). The majority of rhabdoviruses are transmitted by arthropods to vertebrate or plant hosts, but lyssaviruses (e.g. rabies virus) and novirhabdoviruses (e.g. infectious hematopoietic necrosis virus) have evolved to circulate among vertebrates without a biological vector, and sigmaviruses (e.g. Drosophila melanogaster sigma virus) are congenitally transmitted in fruit flies. High throughput host genome sequencing has revealed the integration of rhabdovirus- like elements into the genomes of some arthropods and plants (Ballinger et al., 2012; Fort et al., 2012; Chiba et al., 2011; Katzourakis and Gifford, 2010; Li et al., 2015), suggesting an ancient evolutionary origin and long-standing association of rhabdoviruses with their hosts. Rhabdoviruses are taxonomically classified in thirteen genera in the family Rhabdoviridae, order Mononegavirales, which also includes families Bornaviridae, Filoviridae, Paramyxoviridae and recently established Nyamiviridae (Dietzgen et al., 2011; Walker et al., 2015). The name is based on their characteristic shape and derived from the Ancient Greek word rhabdos meaning “rod or wand”. Classic rhabdoviruses typified by vesicular stomatitis virus (VSV) and sonchus yellow net virus (SYNV) form characteristic bullet- or cone- shaped (animal host; Ge et al., 2010) or bacilliform (plant host; Jackson et al., 2005) enveloped virions that contain non-segmented, negative-sense, single-stranded (ss) RNA genomes of 11–16 kb in length (Figs. 1 and 2). Virions range in size from 100 to 430 × 45 to 100 nm. The basic genome organisation shared by all rhabdoviruses includes five canonical genes that encode (from 3′ to 5′) the nucleoprotein (or nucleocapsid protein, N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and large protein (L, RNA- dependent RNA polymerase) (Fig. 2). This group of structural protein genes is flanked by regulatory 3′ leader and 5′ trailer sequences that show terminal complementarity and contain promoter sequences to initiate replication. The individual genes are flanked by conserved transcription stop and start signals separated by short untranscribed intergenic sequences (Dietzgen and Kuzmin, 2012). The infectious nucleocapsid core [a ribonucleoprotein (RNP) complex], which is active in transcription and replication, consists of the genomic RNA that is always tightly associated with N protein, together with P and L proteins. M protein is responsible for condensation of RNP complex during virion assembly at the host plasma membrane, and the transmembrane spike protein G likely plays an important role in assembly, budding and host cell entry (Dietzgen and Kuzmin, 2012). Rhabdovirus genomes are diverse and often complex because the five canonical genes may be overprinted, overlapped or interspersed with a range of novel accessory genes, such that the number of genes range from 5–10 or more (Walker et al., 2011; 2015; Fig. 3). Among RNA viruses, rhabdovirus genomes have an unusual capacity for plasticity and appear to Virus Res. Author manuscript; available in PMC 2018 January 02. Dietzgen et al. Page 3 have frequently acquired and lost new genes during evolution (Walker et al., 2015). Author ManuscriptAuthor Manuscript Author Manuscript Author Manuscript Author Furthermore, two groups of plant-infecting rhabdoviruses (genera Dichorhavirus and Varicosavirus) were recently found to have a divided genome with the L gene located on a separate RNA segment (Dietzgen et al., 2014; Kormelink et al., 2011). For other reviews on rhabdoviruses see Blondel et al. (2015), Walker et al. (2011), Dietzgen and Kuzmin (2011), Dietzgen et al. (2011), Ammar et al. (2009) and Jackson et al. (2005). 2. Taxonomic classification – past, present and future Rhabdovirus taxonomy is evolving rapidly in an effort to incorporate ever-increasing numbers of new viral sequences obtained through high throughput technologies and to harmonize classifications across genera and families in the order Mononegavirales. In the 9th report of the International Committee on Taxonomy of Viruses (ICTV) the family Rhabdoviridae comprised six genera (Dietzgen et al., 2011). In the 2015 Taxonomy Release [http://www.ictvonline.org/virusTaxonomy.asp], thirteen genera were recognised: Cytorhabdovirus, Dichorhavirus, Ephemerovirus, Lyssavirus, Novirhabdovirus, Nucleorhabdovirus, Perhabdovirus, Sigmavirus, Sprivivirus, Tibrovirus, Tupavirus, Varicosavirus and Vesiculovirus (Fig. 4). Among these, in the recently recognized Dichorhavirus and Varicosavirus genera (Afonso et al., 2016; Adams et al., 2016) for the first
Recommended publications
  • Using Cell Lines to Study Factors Affecting Transmission of Fish Viruses
    Using cell lines to study factors affecting transmission of fish viruses by Phuc Hoang Pham A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo, Ontario, Canada, 2014 ©Phuc Hoang Pham 2014 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Factors that can influence the transmission of aquatic viruses in fish production facilities and natural environment are the immune defense of host species, the ability of viruses to infect host cells, and the environmental persistence of viruses. In this thesis, fish cell lines were used to study different aspects of these factors. Five viruses were used in this study: viral hemorrhagic septicemia virus (VHSV) from the Rhabdoviridae family; chum salmon reovirus (CSV) from the Reoviridae family; infectious pancreatic necrosis virus (IPNV) from the Birnaviridae family; and grouper iridovirus (GIV) and frog virus-3 (FV3) from the Iridoviridae family. The first factor affecting the transmission of fish viruses examined in this thesis is the immune defense of host species. In this work, infections of marine VHSV-IVa and freshwater VHSV-IVb were studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than IVb toward RTgill-W1: IVa caused cytopathic effects (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres.
    [Show full text]
  • Bovine Ephemeral Fever in Asia: Recent Status and Research Gaps
    viruses Review Bovine Ephemeral Fever in Asia: Recent Status and Research Gaps Fan Lee Epidemiology Division, Animal Health Research Institute; New Taipei City 25158, Taiwan, China; [email protected]; Tel.: +886-2-26212111 Received: 26 March 2019; Accepted: 2 May 2019; Published: 3 May 2019 Abstract: Bovine ephemeral fever is an arthropod-borne viral disease affecting mainly domestic cattle and water buffalo. The etiological agent of this disease is bovine ephemeral fever virus, a member of the genus Ephemerovirus within the family Rhabdoviridae. Bovine ephemeral fever causes economic losses by a sudden drop in milk production in dairy cattle and loss of condition in beef cattle. Although mortality resulting from this disease is usually lower than 1%, it can reach 20% or even higher. Bovine ephemeral fever is distributed across many countries in Asia, Australia, the Middle East, and Africa. Prevention and control of the disease mainly relies on regular vaccination. The impact of bovine ephemeral fever on the cattle industry may be underestimated, and the introduction of bovine ephemeral fever into European countries is possible, similar to the spread of bluetongue virus and Schmallenberg virus. Research on bovine ephemeral fever remains limited and priority of investigation should be given to defining the biological vectors of this disease and identifying virulence determinants. Keywords: Bovine ephemeral fever; Culicoides biting midge; mosquito 1. Introduction Bovine ephemeral fever (BEF), also known as three-day sickness or three-day fever [1], is an arthropod-borne viral disease that mainly strikes cattle and water buffalo. This disease was first recorded in the late 19th century.
    [Show full text]
  • Characterization of Viral Communities of Biting Midges and Identification
    viruses Article Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus Sarah Temmam 1, Sonia Monteil-Bouchard 1, Catherine Robert 1, Jean-Pierre Baudoin 1, Masse Sambou 1, Maxence Aubadie-Ladrix 1, Noémie Labas 1, Didier Raoult 1,2, Oleg Mediannikov 1 and Christelle Desnues 1,* 1 Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France; [email protected] (S.T.); [email protected] (S.M.-B.); [email protected] (C.R.); [email protected] (J.-P.B.); [email protected] (M.S.); [email protected] (M.A.-L.); [email protected] (N.L.); [email protected] (D.R.); [email protected] (O.M.). 2 Fondation IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Méditerranée Infection, Assistance Publique–Hôpitaux de Marseille, Marseille 13005, France * Correspondence: [email protected]; Tel.: +33-0-491324630; Fax: +33-0-491387772 Academic Editors: Johnson Mak, Peter Walker and Marcus Thomas Gilbert Received: 21 October 2015; Accepted: 1 March 2016; Published: 11 March 2016 Abstract: More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans.
    [Show full text]
  • ERV) on Cell Culture
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Characterization of eelpout rhabdovirus (ERV) on cell culture Blomkvist, E.; Alfjorden, A.; Hakhverdyan, Mikhayil; Boutrup, Torsten Snogdal; Ahola, H.; Ljunghager, F.; Hagström, Å.; Olesen, Niels Jørgen; Juremalm, M.; Leijon, M.; Valarcher, J.-F.; Axen, C. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Blomkvist, E., Alfjorden, A., Hakhverdyan, M., Boutrup, T. S., Ahola, H., Ljunghager, F., ... Axen, C. (2015). Characterization of eelpout rhabdovirus (ERV) on cell culture. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 228-228). [P-004] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • (LRV1) Pathogenicity Factor
    Antiviral screening identifies adenosine analogs PNAS PLUS targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor F. Matthew Kuhlmanna,b, John I. Robinsona, Gregory R. Bluemlingc, Catherine Ronetd, Nicolas Faseld, and Stephen M. Beverleya,1 aDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cEmory Institute for Drug Development, Emory University, Atlanta, GA 30329; and dDepartment of Biochemistry, University of Lausanne, 1066 Lausanne, Switzerland Contributed by Stephen M. Beverley, December 19, 2016 (sent for review November 21, 2016; reviewed by Buddy Ullman and C. C. Wang) + + The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus macrophages infected in vitro with LRV1 L. guyanensis or LRV2 (LRV1) has been implicated as a pathogenicity factor for leishmaniasis Leishmania aethiopica release higher levels of cytokines, which are in rodent models and human disease, and associated with drug-treat- dependent on Toll-like receptor 3 (7, 10). Recently, methods for ment failures in Leishmania braziliensis and Leishmania guyanensis systematically eliminating LRV1 by RNA interference have been − infections. Thus, methods targeting LRV1 could have therapeutic ben- developed, enabling the generation of isogenic LRV1 lines and efit. Here we screened a panel of antivirals for parasite and LRV1 allowing the extension of the LRV1-dependent virulence paradigm inhibition, focusing on nucleoside analogs to capitalize on the highly to L. braziliensis (12). active salvage pathways of Leishmania, which are purine auxo- A key question is the relevancy of the studies carried out in trophs.
    [Show full text]
  • Characterization of Farmington Virus, a Novel Virus from Birds That Is Distantly Related to Members of the Family Rhabdoviridae
    Palacios et al. Virology Journal 2013, 10:219 http://www.virologyj.com/content/10/1/219 RESEARCH Open Access Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae Gustavo Palacios1†, Naomi L Forrester2,3,4†, Nazir Savji5,7†, Amelia P A Travassos da Rosa2, Hilda Guzman2, Kelly DeToy5, Vsevolod L Popov2,4, Peter J Walker6, W Ian Lipkin5, Nikos Vasilakis2,3,4 and Robert B Tesh2,4* Abstract Background: Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings: Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions: In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. Keywords: Farmington virus (FARV), Family Rhabdoviridae, Next generation sequencing, Phylogeny Background Results Therhabdovirusesarealargeanddiversegroupofsingle- Growth characteristics stranded, negative sense RNA viruses that infect a wide Three litters of newborn (1–2 day old) ICR mice with aver- range of vertebrates, invertebrates and plants [1]. The family agesizeof10pupswereinoculated intracerebrally (ic) with Rhabdoviridae is currently divided into nine approved ge- 15–20 μl, intraperitoneally (ip) with 100 μlorsubcutane- nera (Vesiculovirus, Perhavirus, Ephemerovirus, Lyssavirus, ously (sc) with 100 μlofastockofVero-grownFARV(CT Tibrovirus, Sigmavirus, Nucleorhabdovirus, Cytorhabdovirus AN 114) virus containing approximately 107 plaque and Novirhabdovirus);however,alargenumberofanimal forming units (PFU) per ml.
    [Show full text]
  • Virus Goes Viral: an Educational Kit for Virology Classes
    Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus.
    [Show full text]
  • EU Position the EU Thanks the OIE and in General Supports the Adoption of This Modified User's Guide
    Ref. Ares(2018)2526762 - 15/05/2018 Annex 2 Original: English February 2018 REPORT OF THE MEETING OF THE OIE AQUATIC ANIMAL HEALTH STANDARDS COMMISSION EU comment The EU would like to commend the OIE Aquatic Animal Health Standards Commission for its work and for having taken into consideration EU comments on the Aquatic Code and Manual submitted previously. A number of general comments on this report of the February 2018 meeting of the Aquatic Animals Commission as well as the intended positions of the EU on the draft Aquatic Code and Manual chapters proposed for adoption at the 86th OIE General Session are inserted in the text below, while specific comments are inserted in the text of the respective annexes to the report. The EU would like to stress again its continued commitment to participate in the work of the OIE and to offer all technical support needed by the Aquatic Animals Commission and its ad hoc groups for future work on the Aquatic Code and Manual. The OIE Aquatic Animal Health Standards Commission (hereinafter referred to as the Aquatic Animals Commission) met at OIE Headquarters in Paris from 14 to 21 February 2018. The list of participants is attached as Annex 1. The Aquatic Animals Commission thanked the following Member Countries for providing written comments on draft texts for the OIE Aquatic Animal Health Code (hereinafter referred to as the Aquatic Code) and OIE Manual of Diagnostic Tests for Aquatic Animals (hereinafter referred to as the Aquatic Manual) circulated after the Commission’s September 2017 meeting: Argentina, Australia, Canada, Chile, Chinese Taipei, Costa Rica, Fiji, Guatemala, Japan, Mexico, New Caledonia, Norway, Singapore, Switzerland, Thailand, the United States of America (USA) and the Member States of the European Union (EU).
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]
  • Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
    Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives.
    [Show full text]
  • The Nucleotide Sequence of RNA1 of Lettuce Big-Vein Virus, Genus Varicosavirus, Reveals Its Relation to Nonsegmented Negative-Strand RNA Viruses
    Virology 297, 289–297 (2002) doi:10.1006/viro.2002.1420 The Nucleotide Sequence of RNA1 of Lettuce big-vein virus, Genus Varicosavirus, Reveals Its Relation to Nonsegmented Negative-Strand RNA Viruses Takahide Sasaya,*,1 Koichi Ishikawa,* and Hiroki Koganezawa† *National Agricultural Research Center for Western Region, Zentsuji Campus, Zentsuji, Kagawa 765-8508, Japan; and †National Agricultural Research Center for Western Region, Fukuyama, Hiroshima 721-8514, Japan Received December 12, 2001; accepted February 14, 2002 The complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosa- virus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted Mr of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA. Database searches showed that the amino acid sequence of Lprotein is homologous to those of L polymerases of nonsegmented negative-strand RNA viruses. A cluster dendrogram derived from alignments of the LBVV L protein and the Lpolymerases indicated that the Lprotein is most closely related to the Lpolymerases of plant rhabdoviruses. Transcription termination/polyadenylation signal-like poly(U) tracts that resemble those in rhabdovirus and paramyxovirus RNAs were present upstream and downstream of the coding region. Although LBVV is related to rhabdovi- ruses, a key distinguishing feature is that the genome of LBVV is segmented. The results reemphasize the need to reconsider the taxonomic position of varicosaviruses. © 2002 Elsevier Science (USA) Key Words: Lettuce big-vein virus; Varicosavirus; rhabdovirus; RNA polymerase; nonsegmented negative-strand RNA virus.
    [Show full text]
  • 1/11 FACULTAD DE VETERINARIA GRADO DE VETERINARIA Curso
    FACULTAD DE VETERINARIA GRADO DE VETERINARIA Curso 2015/16 Asignatura: MICROBIOLOGÍA E INMUNOLOGÍA DENOMINACIÓN DE LA ASIGNATURA Denominación: MICROBIOLOGÍA E INMUNOLOGÍA Código: 101463 Plan de estudios: GRADO DE VETERINARIA Curso: 2 Denominación del módulo al que pertenece: FORMACIÓN BÁSICA COMÚN Materia: MICROBIOLOGÍA E INMUNOLOGÍA Carácter: BASICA Duración: ANUAL Créditos ECTS: 12 Horas de trabajo presencial: 120 Porcentaje de presencialidad: 40% Horas de trabajo no presencial: 180 Plataforma virtual: UCO MOODLE DATOS DEL PROFESORADO __ Nombre: GARRIDO JIMENEZ, MARIA ROSARIO (Coordinador) Centro: Veterinaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 3ª Planta E-Mail: [email protected] Teléfono: 957218718 _ Nombre: SERRANO DE BURGOS, ELENA (Coordinador) Centro: Veterinaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 3ª Planta E-Mail: [email protected] Teléfono: 957218718 _ Nombre: HUERTA LORENZO, MARIA BELEN Centro: Veterianaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 2ª Planta E-Mail: [email protected] Teléfono: 957212635 _ DATOS ESPECÍFICOS DE LA ASIGNATURA REQUISITOS Y RECOMENDACIONES Requisitos previos establecidos en el plan de estudios Ninguno Recomendaciones 1/11 MICROBIOLOGÍA E INMUNOLOGÍA Curso 2015/16 Se recomienda haber cursado las asignaturas de Biología Molecular Animal y Vegetal, Bioquímica, Citología e Histología y Anatomía Sistemática. COMPETENCIAS CE23 Estudio de los microorganismos que afectan a los animales y de aquellos que tengan una aplicación industrial, biotecnológica o ecológica. CE24 Bases y aplicaciones técnicas de la respuesta inmune. OBJETIVOS Los siguientes objetivos recogen las recomendaciones de la OIE para la formación del veterinario: 1. Abordar el concepto actual de Microbiología e Inmunología, la trascendencia de su evolución histórica y las líneas de interés o investigación futuras.
    [Show full text]