Brigham Young University BYU ScholarsArchive Theses and Dissertations 2012-01-28 A Design Basis for Composite Cascode Stages Operating in the Subthreshold/Weak Inversion Regions Taylor Matt Waddel Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Electrical and Computer Engineering Commons BYU ScholarsArchive Citation Waddel, Taylor Matt, "A Design Basis for Composite Cascode Stages Operating in the Subthreshold/Weak Inversion Regions" (2012). Theses and Dissertations. 2934. https://scholarsarchive.byu.edu/etd/2934 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact
[email protected],
[email protected]. A Design Basis for Composite Cascode Stages Operating in the Subthreshold/Weak Inversion Regions Taylor M. Waddel A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science David J. Comer, Chair Aaron R. Hawkins Richard H. Selfridge Department of Electrical and Computer Engineering Brigham Young University April 2012 Copyright © 2012 Taylor M. Waddel All Rights Reserved ABSTRACT A Design Basis for Composite Cascode Stages Operating in the Subthreshold/Weak Inversion Regions Taylor M. Waddel Department of Electrical and Computer Engineering, BYU Master of Science Composite cascode stages have been used in operational amplifier designs to achieve ultra- high gain at very low power. The flexibility and simplicity of the stage makes it an appealing choice for low power op-amp designs. Op-amp design using the composite cascode stage is often made more difficult through the lack of a design process.