Lac 61 : Tauruntium Quadrant Nord-Est

Total Page:16

File Type:pdf, Size:1020Kb

Lac 61 : Tauruntium Quadrant Nord-Est Erquy-Nox LAC 61 : TAURUNTIUM QUADRANT NORD-EST Nom Nom latin Mer de la Tranquillité Mare Tranquillitatis Auteur du nom Région Ø : 700 x 700 km Taille Riccioli Mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Mer NL+5 ou PL+4 Jx10 4 Pré-Nectarien Note : l’une des plus grande mer, forme circulaire. Présence de rainures en bordure et de dorsales vers l’intérieur. Nom Nom latin Marais du Sommeil Palus Somni Auteur du nom Région Ø : 200 x 100 km Taille Riccioli O Mer des Crises, bord E Mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Marais NL+4 ou PL+3 Jx10 2 Pré- Imbrien Note : bande de hautes terres plutôt plane. Nom Nom latin Golfe de la Concorde Sinus Concordiae Auteur du nom Région Ø : 160 x 100 km Taille -- Bord E Mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Golfe NL+4 ou PL+3 Jx10 1 Pré-Imbrien Note : région plane. Nom Origine du nom : Angelo Secchi (1818 - 1878) Italie Monts Secchi Astron., spectre des étoiles, première classification des étoiles par spectre 1868 Auteur du nom Région Ø : 50 x 20 km Taille -- Bord S mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Chaîne de montagnes NL+4 ou PL+3 L50 2 Pré-Imbrien Note : massif rectiligne orienté SE NO. Il limite le passage entre la mer de la Tranquillité et la mer de la Fécondité. © Erquy-Nox février 2014 1 Erquy-Nox LAC 61 : TAURUNTIUM QUADRANT NORD-EST Nom Origine du nom : Angelo Secchi (1818 - 1878) Italie Rimae Secchi Astron., spectre des étoiles, première classification des étoiles par spectre 1868 Auteur du nom Région Long. : 50 km Taille -- Bord NO mer de la Tranquillité Larg. : 3 km Type Lunaison Instrument mini Intérêt Age Système de rainures NL+4 ou PL+3 T200 3 Imbrien Note : rainure SO-NE. Nom Origine du nom : Lucius Taruntius Firmamus (II siècle av. JC) Romain Taruntius Philos. et math. Auteur du nom Région Ø : 56 km Taille Riccioli Bord SE Mer de la Tranquillité Prof : 1 200 m Type Lunaison Instrument mini Intérêt Age Cratère NL+4 ou PL+3 L50 4 Copernicien Note : fond avec pic central et anneau de monticule et une rainure. Les versants portent des cratères satellites. La muraille porte un cratère au N. Nom Origine du nom : Charles Lyell (1797 - 1875) Ecosse Lyell Géologue Auteur du nom Région Ø : 31 km Taille -- Bord O du marais du Sommeil Type Lunaison Instrument mini Intérêt Age Cratère NL+5 ou PL+4 L50 3 Pré-Imbrien Note : fond plat, rempli de lave et communiquant avec la mer de la Tranquillité. Muraille élevée et versants escarpés. Nom Origine du nom : Proclus de Lycie (412 - 485) Grec Proclus Philosophe néo-platonicien. Auteur du nom Région Ø : 28 km Taille Riccioli Bord E du marais du Sommeil Type Lunaison Instrument mini Intérêt Age Cratère NL+4 ou PL+3 L50 3 Copernicien Note : les versants sont escarpés, la muraille est élevée. Le fond est plat et peu étendu. Rayonnement. © Erquy-Nox février 2014 2 Erquy-Nox LAC 61 : TAURUNTIUM QUADRANT NORD-EST Nom Origine du nom : Augustin Louis Cauchy (1789 - 1857) France Cauchy Math, travaux sur les fonctions. Auteur du nom Région Ø : 13 km Taille -- O du golfe de la Concorde Type Lunaison Instrument mini Intérêt Age Cratère NL+5ou PL+4 T100 3 Copernicien Note : cratère bol typique, situé entre rupes et rima cauchy. Versants peu escarpé, le fond est en forme de bol. Nom Origine du nom : Augustin Louis Cauchy (1789 - 1857) France Rupes Cauchy Math, travaux sur les fonctions. Auteur du nom Région Long : 120 km Taille -- O du golfe de la Concorde Type Lunaison Instrument mini Intérêt Age Escarpement NL+5ou PL+4 Invisible ! 4 Imbrien Note : formation rectiligne orientée NO-SE. Nom Origine du nom : Augustin Louis Cauchy (1789 - 1857) France Rima Cauchy Math, travaux sur les fonctions. Auteur du nom Région Long : 210 km Taille -- O du golfe de la Concorde Larg : 4 km Type Lunaison Instrument mini Intérêt Age Rainure NL+5ou PL+4 T200 4 Imbrien Note : rainure rectiligne orientée NO-SE. A l’est la rainure traverse une zone montagneuse et se poursuit jusqu’au cratère Lawrence. Nom Origine du nom : Augustin Louis Cauchy (1789 - 1857) France Cauchy Omega Math, travaux sur les fonctions. Auteur du nom Région Ø : 12 km Taille -- O du golfe de la Concorde, S rupes Cauchy Type Lunaison Instrument mini Intérêt Age Dôme NL+5 ou PL+4 T100 4 Imbrien Note : dôme volcanique avec cratère sommital. © Erquy-Nox février 2014 3 Erquy-Nox LAC 61 : TAURUNTIUM QUADRANT NORD-EST Nom Origine du nom : Augustin Louis Cauchy (1789 - 1857) France Cauchy Tau Math, travaux sur les fonctions. Auteur du nom Région Ø : 12 km Taille -- O du golfe de la Concorde Type Lunaison Instrument mini Intérêt Age Dôme NL+5 ou PL+4 T100 4 Imbrien Note : dôme volcanique sans cratère sommital. Nom Origine du nom : Aryabhata(476 - 550) Inde Aryabhata Astronome et mathématicien, théorie héliocentrique, durée de l’année très précise 365j 6h 12mm ! Eq. du 1er degré…, approximation de π très précise… Auteur du nom Région Ø : 22 km Taille -- Centre de la mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Cratère NL+5 ou PL+4 L50 3 Pré-Imbrien Note : cratère très abîmé, presque fantôme. Une partie de la muraille ouest est engloutie par la lave. Nom Origine du nom : Nevil Maskelyne (1732 - 1811) Angleterre Maskelyne Astronome, directeur de l’observatoire de Greenwich à partir de 1765. Observe le transit de Vénus en 1761 à St Hélène. Auteur du nom Région Ø : 25 km Taille Lohrmann Centre de la mer de la Tranquillité Type Lunaison Instrument mini Intérêt Age Cratère NL+5 ou PL+4 L50 3 Eratosthénien Note : formation circulaire isolée, versants escarpés et muraille élevée en gradins. Le fond est plat avec une montagne centrale. © Erquy-Nox février 2014 4 .
Recommended publications
  • NASA MEO Lunar Impact Candidates
    NASA Marshall Space Flight Center - Automated Lunar and Meteor Observatory (ALaMO) - Candidate lunar impact observation database Last Updated: 7-Aug-2008 By: D. Moser PRELIMINARY # of video Lunar Lunar Effective Peak Time Probable Lunar Lunar frames illum. Lunar elevation Aperture focal length MSFC Flash # Date (UT) (UT) Type longitude latitude Region (1/30 sec) fraction phase (deg) (cm) Optical config. (cm) Camera Digitizer Location Observers Press release links 1 7-Nov-05 23:40:53.0 Taurid 39.5 W 31.9 N Gruithuisen 5 0.38 wax 28.4 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC 4487 Suggs and Swift http://science.nasa.gov/headlines/y2005/22dec_lunartaurid.htm 2 2-May-06 02:34:39.0 Sporadic 19.6 W 24.3 S Bullialdus 14 0.21 wax 26.1 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm 3 4-Jun-06 04:48:35.4 Sporadic 35.8 W 11.8 S Rima Herigonius 1.5 0.52 wax 18.9 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Swift, Hollon, & Altstatt 105 21-Jun-06 08:35:45.0 Sporadic 22.7 E 2.1 N Central Mare Tranquillitatus 2 0.20 wan 15.4 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 2.5 0.21 wan 19.7 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 1.5 0.21 wan 19.7 35.5 Rit Chret SD 94 StellaCam EX Sony GV-D800 MSFC ALAMO Suggs 5 19-Jul-06 10:14:44.0 Sporadic 56 E 22 N Mare
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • NASA MEO Lunar Impact Candidates
    NASA Marshall Space Flight Center - Automated Lunar and Meteor Observatory (ALaMO) - Candidate lunar impact observation database Last Updated: 1-May-2008 By: D. Moser PRELIMINARY # of video Lunar Effective Probable Lunar Lunar frames Lunar elevation Aperture focal length MSFC Flash # Date (UT) Peak (UT) Type longitude latitude Region (1/30 sec) phase (deg) (cm) Optical config. (cm) Camera Digitizer Location Observers Press release links 1 7-Nov-05 11:41:52 Taurid 39.5 W 31.9 N Mare Imbrium 5 0.38 wax 28.4 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC 4487 Suggs and Swift http://science.nasa.gov/headlines/y2005/22dec_lunartaurid.htm 2 2-May-06 02:34:40.08 Sporadic 19.6 W 24.3 S Bullialdus 14 0.21 wax 26.1 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm 3 4-Jun-06 04:48:35.367 Sporadic 35.8 W 11.8 S Rima Herigonius 1.5 0.52 wax 18.9 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Swift, Hollon, & Altstatt 4 21-Jun-06 08:57:17.5 Sporadic 62.2 E 13.9 N Mare Crisium 2.5 0.21 wan 19.7 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 " " " " " " 1.5 " " 35.5 Rit Chret SD 94 StellaCam EX Sony GV-D800 MSFC ALAMO Suggs 5 19-Jul-06 10:14:44 Sporadic 60 E 23 N Mare Crisium 1 0.32 wan 51.2 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Suggs 5 " " " " " " 2 " " 35.5 Rit Chret SD 94 StellaCam EX Sony GV-D800 MSFC ALAMO Moser 6 3-Aug-06 01:43:19 Sporadic 38 W 26 N Aristarchus 3.5 0.47 wax 27.8 35.5 Rit
    [Show full text]
  • NASA MEO Lunar Impact Candidates
    NASA Marshall Space Flight Center (MSFC) - Automated Lunar and Meteor Observatory (ALaMO) - Candidate lunar impact observation database NASA Meteoroid Environment Office (MEO) Last Updated: 9-Mar-2009 By: D. Moser PRELIMINARY # of video Lunar Lunar Effective Peak Time Probable Lunar Lunar frames illum. Lunar elevation Aperture focal length MEO Flash # Date (UT) (UT) Type longitude latitude Region (1/30 sec) fraction phase (deg) (cm) Optical config. (cm) Camera Digitizer Location Observers Press release links 1 7-Nov-05 23:40:53.0 Taurid 39.5 W 31.9 N Gruithuisen 5 0.38 wax 28.9 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC 4487 Suggs and Swift http://science.nasa.gov/headlines/y2005/22dec_lunartaurid.htm 2 2-May-06 02:34:39.0 Sporadic 19.6 W 24.3 S Bullialdus 14 0.21 wax 26.5 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm 3 4-Jun-06 04:48:35.4 Sporadic 35.8 W 11.8 S Rima Herigonius 1.5 0.52 wax 19.1 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Swift, Hollon, & Altstatt 105 21-Jun-06 08:35:45.0 Sporadic 22.7 E 2.1 N Central Mare Tranquillitatus 2 0.20 wan 15.6 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 2.5 0.21 wan 19.9 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 1.5 0.21 wan 19.9 35.5 Rit Chret SD 94 StellaCam EX Sony GV-D800 MSFC ALAMO Suggs
    [Show full text]
  • Planetológiai Helyesírási Tanácsadó
    Planetológiai helyesírási tanácsadó GEOLÓGIA Kőzetrétegtani egységek ridged member = gerinces tagozat Heveliusi Formáció, Hold Geokronológia (idő) imbriumi időszak kora-imbriumi kor noachi időszak Kronosztratigráfia (időrétegtani)(kőzettestek) imbriumi rendszer alsó-imbriumi sorozat noachi rendszer Az egyes egységek magyar elnevezései MERKÚR kuiperi mansuri calorisi tolsztoji pretolsztoji VÉNUSZ aureliai atlai guinevrai ruszalkai laviniai sigrúni fortunai prefortunai HOLD kopernikuszi eratoszthenészi imbriumi nektári prenektári (procellárumi: elavult) MARS amazoni heszperiai noachi prenoachi MARS - geokémiai sideriki theiiki phylloci (ejtsd: filloszi) GEOGRÁFIA Bolygófelszíni alakzatok elnevezései Köznévi taggal (az alábbiakat mindig kötőjellel kapcsoljuk, kivéve birtokos esetben: Cassini-régió, de: Válságok tengere) Megjegyzések: • Az itt felsorolt alakok: latin alak egyes szám, többes szám [latin alak latinos kiejtése], magyar megfelelő • A ¯ jel az előtte álló u-n vagy e-n lévő vonalékezet • A toldalékok a (magyar vagy latin) nevekhez általában közvetlenül kapcsolódnak, a szükséges hasonulások vagy a szóvégi magánhangzó nyúlásának a jelölésével: Caloris Montesszal, Lavinia Planitián, Ión. • A két különírt tagból álló latin elnevezésekhez az -i/-beli képzô kötôjellel kapcsolódik; az eredeti kis- és nagybetûket megtartjuk: Caloris Planitia-i, Sinus Meridiani-beli stb. (vö. AkH. 1984: 217. b) pont). A két különírt tagból álló magyar elnevezéseknél az -i képzôs forma: Halál tavabeli, Méz tengerebeli, Rothadás mocsarabeli, Szivárvány öblebeli
    [Show full text]
  • A Map of the Visible Side of the Moon
    The Near Side of the Moon 108 N 107 106 105 45 104 46 103 47 102 48 101 49 100 24 50 99 51 52 22 53 98 33 35 54 97 34 23 55 96 95 56 36 25 57 94 58 93 2 92 44 15 40 59 91 3 27 37 17 38 60 39 6 19 20 26 28 1 18 4 29 21 11 30 W 12 E 14 5 43 90 10 16 89 7 41 61 8 62 9 42 88 32 63 87 64 86 31 65 66 85 67 84 68 83 69 82 81 70 80 71 79 72 73 78 74 77 75 76 S Maria (Seas) Craters 1 - Oceanus Procellarum (Ocean of Storms) 45 - Aristotles 77 - Tycho 2 - Mare Imbrium (Sea of Showers) 46 - Cassini 78 - Pitatus 3 - Mare Serenitatis (Sea of Serenity) 47 - Eudoxus 79 - Schickard 4 - Mare Tranquillitatis (Sea of Tranquility) 48 - Endymion 80 - Mercator 5 - Mare Fecunditatis (Sea of Fertility) 49 - Hercules 81 - Campanus 6 - Mare Crisium (Sea of Crises) 50 - Atlas 82 - Bulliadus 7 - Mare Nectaris (Sea of Nectar) 51 - Mercurius 83 - Fra Mauro 8 - Mare Nubium (Sea of Clouds) 52 - Posidonius 84 - Gassendi 9 - Mare Humorum (Sea of Moisture) 53 - Zeno 85 - Euclides 10 - Mare Cognitum (Known Sea) 54 - Menelaus 86 - Byrgius 18 - Mare Insularum (Sea of Islands) 55 - Le Monnier 87 - Billy 19 - Sinus Aestuum (Bay of Seething) 56 - Vitruvius 88 - Cruger 20 - Mare Vaporum (Sea of Vapors) 57 - Cleomedes 89 - Grimaldi 21 - Sinus Medii (Bay of the Center) 58 - Plinius 90 - Riccioli 22 - Sinus Roris (Bay of Dew) 59 - Magelhaens 91 - Galilaei 23 - Sinus Iridum (Bay of Rainbows) 60 - Taruntius 92 - Encke T 24 - Mare Frigoris (Sea of Cold) 61 - Langrenus 93 - Eddington 25 - Lacus Somniorum (Lake of Dreams) 62 - Gutenberg 94 - Seleucus 26 - Palus Somni (Marsh of Sleep)
    [Show full text]
  • Javaslat a Planetológiai Nevezéktan Magyar Rendszerére
    HARGITAI HENRIK, KOZMA JUDIT, KERESZTURI ÁKOS, BÉRCZI SZANISZLÓ, DUTKÓ ANDRÁS, ILLÉS ERZSÉBET, KARÁTSON DÁVID, SIK ANDRÁS Javaslat a planetológiai nevezéktan magyar rendszerére Az elmúlt évtizedek során a bolygótani névanyag és szakszókincs egyre szélesebb körben terjedt el: már mindennaposnak számít, hogy akár napi- lapok hasábjain is feltûnnek. A szavak jelentôs részét angolból fordítják. A gyakorlatban az egyes neveket, szakszavakat különféleképpen fordítják – részint hozzá nem értés, részint különféle „iskolák” tudatos névhasználata miatt. Az ûrkutatás gyors fejlôdésével párhuzamosan mind szélesebb körben egyre gyakoribb használatuk várható a jövôben, ezért szükségesnek látjuk a nevek írásmódjának egységesítését, legalább ajánlásszinten. Az alábbi nevek és szakszavak megállapítását többéves elôzetes szakmai konzultáció elôzte meg az ELTE, MÁFI, MTA KTM CSKI, MCSE szakértôi részérôl. Ebben fi- gyelembe vettük a nemzetközi írásmódot és a magyar névhasználat hagyo- mányait is. Ahol nem jutottunk konszenzusra, azt külön jelezzük. Földrajzi nevek A Nemzetközi Csillagászati Unió bolygófelszíni nevekkel foglalkozó mun- kacsoportjának (IAU WGPSN: Working Group for Planetary System Nomencla- ture) alapelve szerint az idegen égitestek helynevei latinos formában írandók. Riccioli 1651-es Hold-térképén még latinul nevezte meg az alakzatokat, mert akkoriban a latin volt a nemzetközi tudomány nyelve. A 19. századra azon- ban már minden nemzet a maga nyelvén nevezte el az alakzatokat, és fordí- totta a hagyományos latin elnevezéseket. Akkor már az egyes szerzôk egyéni neveivel volt tele a Hold térképe. Az IAU 1935-ben tette hivatalossá „letisztí- tott” holdi nevezéktani listáját, még angol formában (például: „Carpathian Mts”). Az 1950-es években a Hold kutatása mind szélesebb közönséget fog- lalkoztatott, így egyre több helyen említették lefordítva a holdi helyneveket. A szovjet felfedezések nyomán születô új neveket az angol sajtó azonnal angol fordításban adta tovább.
    [Show full text]
  • Hungarian Localization of the International Planetary Nomenclature System
    3rd INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS 15-20 June, 2010, Nessebar, Bulgaria HUNGARIAN LOCALIZATION OF THE INTERNATIONAL PLANETARY NOMENCLATURE SYSTEM Henrik Hargitai Author: Henrik Hargitai Eötvös Loránd University, Institute of Geography and Earth Sciences, Planetary Science Research Group 1117 Budapest, Pázmány P st 1/1 hhargitai[at]gmail.com Abstract: The paper describes the Hungarian localization of the official IAU nomenclature system of planetary body surface features and planetary body names. The localized forms are recommended for use in texts published in popular science journals and newspapers and books for the general public. Keywords: planetary cartography, Mars, Moon, planetary nomenclature, placenames, toponymy INTRODUCTION The Planetary Nomenclature System is maintained by the Working Group for Planetary System Nomenclature (WGPSN) of the International Astronomical Union, and is published as the Gazetteer of Planetary Nomenclature which is distributed by the U.S. Geological Survey (USGS). Planetary surface feature Place Names consist of two elements: a specific term and a descriptor term. Crater, bright albedo and some other names have no descriptor term. Descriptor terms are in Latin language; for specifics, the original form is retained if the original is using Latin alphabet; if not, a transformation to Latin alphabet is applied. The origin of this system goes back to the 17th century, when the first Lunar maps, especially the Grimaldi-Riccioli map used Latin terms which was a conventional custom of cartographers
    [Show full text]
  • Lunar Terminology 341
    Lunar Terminology 341 Lunar Terminology Are there still a few words associated with the Moon that you do not understand yet? Here is a simple glossary to help you along… Albedo – The amount of reflectiveness of a certain surface feature Anorthosite – Granular igneous rock usually of soda-lime feldspar Apogee – The point of the Moon’s orbit furthest from Earth – 406,700 km Basin – A large impact crater, with a diameter in excess of 100 km Breccia – Coarse, preexisting rock and angular fragments Caldera – Volcano summit depression formed by explosion or collapse Catena – Crater chain Cavus – Groups of hollows or irregular depressions Craters – Indentations that are bowl or saucer shaped in configuration; a depression with steep slopes on the surface; formed by impact or geologic activity Diurnal – A daily cycle Dorsum – ridge Ejecta – Impact crater material that is thrown clear of the source and covers the surface at least one crater diameter; streamers of material originating from a impact area Gibbous – Phase where more than half, but less than all, the Moon is illuminated Highlands – Densely cratered and higher elevated areas of the lunar surface Lacus – Small plain Lava – Volcanic rock present in mare areas; basalt flow Mare – The low surface reflectivity area filled with lava that covers the floors of older basins Mascon – Concentrations of mass on the lunar surface Mensa – Flat-topped ridges with cliff-like edges Mons – Mountain New – Phase during which the Moon is entirely in shadow Oceanus – A single, large dark area Palus – A small plain 342 Lunar Terminology Patera – A disfigured crater; complex with irregular edges Perigee – Point of lunar orbit closest to Earth – 356,400 km Planitia – A low plain Planum – A high plain Promontorium – A high point of land.
    [Show full text]
  • Maria: DENİZLER Kuzey 1- Mare Frigoris
    Maria: DENİZLER Kuzey 1- Mare Frigoris (Sea of Cold) IAU 2- Mare Imbrium (Sea of Rains) IAU 3- Sinus Aestuum (Bay of Seething) IAU Kuzey-Doğu 4- Sinus Medii (Bay of the Center) IAU 5- Mare Vaporum (Sea of Vapors) IAU 6- Mare Serenitatis (Sea of Serenity) IAU 7- Mare Tranquillitatis (Sea of Tranquillity) IAU 8- Mare Crisium (Sea of Crises) IAU 17- Lacus Somniorum (Lake of Sleep) IAU 18- Palus Somni (Marsh of Sleep) IAU 19- Mare Anguis (Sea of Snakes) IAU 20- Mare Undarum (Sea of Waves) IAU Güney-Doğu 9- Mare Fecunditatis (Sea of Fecundity) IAU 10- Mare Nectaris (Sea of Nectar) IAU 21- Mare Spumans (Sea of Foam) IAU Güney-Batı 11- Mare Nubium (Sea of Clouds) IAU 12- Mare Humorum (Sea of Moisture) IAU 13- Mare Cognitum (Known Sea) IAU 22- Palus Epidemiarum (Marsh of Diseases) IAU Batı 14- Oceanus Procellarum (Ocean of Storms) IAU Kuzey-Batı 15- Sinus Roris (Bay of Dew) IAU 16- Sinus Iridum (Bay of Rainbows) IAU Montes: DAĞLAR Kuzey-Doğu 23- Montes Alpes IAU 24- Vallis Alpes (Alpine Valley) IAU 25- Montes Caucasus IAU 26- Montes Apenninus IAU 27- Montes Haemus IAU 28- Montes Taurus IAU Güney-Doğu 29- Montes Pyrenaeus IAU Güney-Batı 30- Rupes Recta (Straight Wall) [Geological Fault] IAU 31- Montes Riphaeus IAU Kuzey-Batı 32- Vallis Schröteri (Schröter's Valley) [Northwest of Crater Aristarchus, 73, and North of Crater Herodotus] IAU 33- Montes Jura IAU Craters: KRATERLER Kuzey-Doğu 34- Crater Aristoteles [on the East part of Mare Frigoris, 1] IAU 35- Crater Cassini IAU 36- Crater Eudoxus IAU 37- Crater Endymion IAU 38- Crater Hercules IAU 39-
    [Show full text]
  • Subject Index
    SUBJECT INDEX Accretion of the Moon Aphelion 34 (chemistry) 419 Apogee 57 Aeronautical Chart and Apollo 5, 8, 596–598, 602, 603, 605 Information Center Apollo 11 30, 609, 611–613 (ACIC) 60 geology 613 Age dating 134 landing site 611, 612 highland rocks 218, 219, 225, 228, 245, 250, Apollo 12 610, 614–616 253, 255, 256 geology 616 mare basalts 208, 209 landing site 614, 615 methods 134, 223 Apollo 14 31, 610, 617–619 Agglutinates 288, 296–299, 301, 339, 414 geology 619 and siderophile elements 414 landing site 617, 618 chemistry 299 Apollo 15 33, 36, 37, 337, 348, 620– description 296 622 F3 model 299 geology 622 genesis 298 heat flow 36, 37 mineralogy 297 landing site 620, 621 native Fe in 154 Apollo 16 32, 341, 351, 623–625, 631 petrography 298 geology 625 physical properties 296 landing site 623, 624 solar-wind elements in 301 Apollo 17 35, 37, 341, 348, 626–628, Akaganeite 150 631 Albedo 59, 558, 560, 561 geology 628 absorption coefficient 561 heat flow 37 Bond albedo 560 landing site 626, 627 geometrical albedo 560 Apollo command module normal albedo 560 experiments 596 scattering coefficient 561 Apollo Lunar Module (LM) 22, 476 single scattering albedo 560 Apollo Lunar Sample Return spherical albedo 560 Containers (ALSRC) 22 Albite 127, 363, 368 Apollo Lunar Sounder Aldrin, Edwin E., Jr. 27–30 Experiment (ALSE) 564 Alkali anorthosite 228, 381, 398, 399 Apollo Self-Recording high strontium, gallium Penetrometer (SRP) 508, 512, 591 content 399 Apollo Simple Penetrometer Alkali gabbro 370 (ASP) 506 Alkali gabbronorite 230, 368 Apollo
    [Show full text]
  • Appendix 1 Down to Earth
    Planetary Vistas The Landscapes of Other Worlds Planetary vistas on Earth and Mars: exploration and discovery. Fig. 1 Northeastern view from the northern top of Mount Kosciusko by Eugene von Guérard (1811-1901). In 1862, von Guérard participated in an expedition to Mount Kosciusko, Australia’s highest mountain, led by the Bavarian scientist Georg von Neumayer (1826-1909). The expedition served to improve the map of Australia, e.g., by measuring the heights of mountains as well as measuring Earth’s magnetic field. In this painting of 1863, Neu- mayer is the person in the foreground, making scientific observations with an instrument, perhaps a barometer; his assistant, two guides and his dog Hector are also discernible among and against the rocks and the snow of the mountain top. Devoid of noticeable vegetation, the scene could almost be of another planet like Mars, except for the people and the cloudy, rainy sky. The picture is a painting from life, no doubt the landscape represented with paint- erly artifice. (The National Gallery of Australia: Wikimedia Commons, com- mons.wikimedia.org/wiki/File:Guerard_ Mount_Townsend_1863.jpg.) Fig. 2 Sunset at Endeavour Crater on Mars, by Cornell’s Pancam team and Don Davis, 2012. The Opportunity rover, foreground, positioned on the walls of the Martian crater Endeavour, looks over the crater floor, its shadow surrounded by a solar halo. Consid- ered against von Guérard’s painting, the two pictures have the same focus on the rocky landscape, the same small human (or proxy human) foreground figures, the same composition with low sun and high horizon, the same subject of scientific exploration and the same romantic feel, although 150 years separates them.
    [Show full text]