Estudio Y Observacion Del Mare Tranquillitatis

Total Page:16

File Type:pdf, Size:1020Kb

Estudio Y Observacion Del Mare Tranquillitatis ESTUDIO Y OBSERVACIÓN DEL MARE TRANQUILLITATIS Grupo de Estudios Lunares “Enrique Silva” PLAN Y NOTAS PARA LA OBSERVACIÓN DEL MARE TRANQUILLITATIS 1.- Introducción. La “Llamada a Observación” difundida por TLO en su número de Mayo de 2015, ponía el foco en el “ Mare Tranquillitatis, incluyendo su superficie y bordes1”. Los miembros del Grupo de Estudios Lunares “Enrique Silva” de la AAM, decidimos tomar cartas en este asunto. El estudio y las observaciones que siguen constituyen nuestra aportación para la AAM, de la cual se remitirá un informe más escueto a los convocantes de la observación. Abordaremos el estudio utilizando fotografías de baja resolución y reservaremos las de alto detalle para documentar nuestras observaciones telescópicas. Para hacer la lectura más fluida hemos concentrado todos los datos numéricos en el apéndice de datos situado al final. Foto 1A.- Situación del Mare Tranquillitatis. La cuenca del Mare Tranquillitatis (foto de la portada y foto 1) es una llanura ovalada que mide 837 Km de diámetro y abarca una superficie de 421.000 Km 2. Se halla centrada sobre el paralelo selenográfico 9º N y el meridiano selenográfico 27º E. Dentro de ella, la lava surgida hace tres mil millones de años rellenó toda la oquedad, formando una llanura magmática que constituye propiamente el llamado Mare Tranquillitatis. Pero conviene remarcar que existe una distinción de unos mil millones de años en tiempo, entre la formación de la cuenca (en el Período Prenectárico) y la del mare (en el Período Ímbrico Superior) para no caer en el error tan común de confundir los maria con sus cuencas. 1 CALL FOR OBSERVATIONS: FOCUS ON MARE TRANQUILLITATIS including its surface and margins. (http://moon.scopesandscapes.com/tlo_back/tlo201505.pdf). - 2 - La cuenca que nos ocupa limita al Norte con el Mare Serenitatis, del que la separa un “estrecho” que determinan el Mons Argaeus al Este y el Promontorium Archerusia al Oeste. Al Este limita con el Mare Crisium, del que la separa el Palus Somni, una región de terreno grisáceo más claro que el suelo magmático de los maria , pero más obscuro que el de las terrae , y el Sinus Concordiae, expansión magmática del Mare que nos ocupa. El límite Sur está repartido entre dos cuencas separadas por una lengua de terreno tremendamente torturado por estructuras de impacto anónimas y terriblemente derruidas, que revelan su gran antigüedad y entre las cuales destaca por el gran brillo del halo que lo rodea, el pequeño cráter Censorinus. Al SE se abre un “estrecho” encajado entre los Montes Secchi y el circo Taruntius, que comunica con el Mare Fecunditatis. Y al SO irrumpe un segundo “estrecho”, el Sinus Asperitatis, que lo hace con el Mare Nectaris (fuera de la foto). Foto 1B.- Identificación de los accidentes geológicos incluidos en el Mare Tranquillitatis. Finalmente al Oeste limita con las viejas terrae que muestran grandes cicatrices de un pasado violento, como el derruido e inundado circo Julius Caesar y la grieta Rima Ariadaeus. La forma no circular de esta cuenca también saca a la luz una historia geológica violenta. Además de la intrusión de las terrae al Sur, que parece dividirla en dos concavidades ovales, presenta tres grandes inserciones (“mordidas”) de otras tantas cuencas de formación posterior, que forman los dos “estrechos” y la “bahía ( Sinus Asperitatis) que hemos señalado más arriba. Además, la zona Norte presenta dos “bahías”, o expansiones magmáticas, las Sinus Concordiae al Este y Sinus Honoris al Oeste, que no encajan en una forma circular. Todas estas evidencias de antigüedad encajan bien en la edad que se atribuye a esta cuenca, que se supone formada en el período Pre-Nectárico, es decir hace entre 3900 y 3850 millones de años (entre 3,9 y 3,85 eones). - 3 - El mecanismo de su formación es común al del resto de las cuencas lunares: por impacto de meteoritos y cometas durante la llamada “Época Cataclísmica Tardía del Sistema Solar” (hace 4100 millones de años), es decir que es una estructura de impacto 2. En la foto 1B hemos representado el borde original, o anillo principal, de la cavidad excavada por dicho evento, hoy altamente modificado por los impactos que originaron posteriormente las cuencas más jóvenes, de los Maria Serenitatis, Fecunditatis y Nectaris. El aspecto achatado del anillo se debe a la perspectiva con que fue tomada la foto. Sorprendentemente, en la foto se pone de manifiesto que, a diferencia de las cuencas jóvenes, el borde de la que nos ocupa carece de montañas arqueadas que lo circunden. Esta ausencia ha sido explicada en términos de cierta “relajación [de la corteza] por viscosidad”, cuya causa está relacionada con su antigüedad. En efecto, la formación tan temprana de la cuenca tuvo lugar en una época en que toda la superficie de la Luna estaba muy caliente, tras haber estado fundida durante dicha Época Cataclísmica Tardía. El calor que absorbió la Luna por el bombardeo de los asteroides había fundido la superficie, formando un “océano de lava” que se extendía cientos de kilómetros en profundidad 3, de modo que cuando sucedió el impacto que formó la cuenca del Mare Tranquillitatis, el calor residual que conservaba la superficie lunar era suficiente para mantener la corteza en estado viscoso. Un análisis de la morfología del cráter Dawes ha mostrado que la consecuencia de tan intenso calor, fue una deformación plástica que causó la relajación de los bordes elevados de la cuenca, la reducción del relieve y el realce de los macizos, a medida que la corteza blanda cedía a su alrededor. Foto 2.- Localización de los restos del segundo anillo. Pese a tal relajación de la corteza, los especialistas en geología lunar han conseguido identificar vestigios de un segundo anillo concéntrico de 950 Km de diámetro, al NO del Sinus Amoris, entre los cráteres Römer y Hill (foto 2). Este hallazgo viene a otorgar a la cuenca la condición de multianular, que es también característica de las grandes cuencas de impacto. Pero el aspecto más intrigante de la historia geológica de esta cuenca, como la de otras de su misma antigüedad (las pre-nectáricas), o sea las del Mare Nubium, el Mare Fecunditatis y la del Oceanus Procellarum, es que no contienen un mascon , es decir, una concentración masivas de magma en el punto más profundo del suelo. 2 Para ampliar información sobre esta materia, puede consultarse el artículo “Mecánica de Impacto”, A. Martos, Neomenia núm. 45, 9/13. 3 El bombardeo por asteroides que tuvo lugar durante la Época Cataclísmica tardía, quizá debido a la reconfiguración de las órbitas de Júpiter y Saturno, afectó a todos los planetas terráqueos del Sistema Solar, incluida la Tierra. - 4 - Seguramente debido a esta carencia no se observa en la superficie los plegamientos concéntricos ( dorsa ), que en otras cuencas que los poseen denuncian la fractura y el colapso del suelo, bajo efecto de la presión que ejerce ese magma ya solidificado (el mascon ), cuando el equilibrio isostático requiere que regrese al estrato del manto de donde procedía. Foto 3. Estructuras de impacto Ritter, Sabine y Dionysius. Pero aún así, y ello añade mayor intriga a este accidente geológico, en los bordes de la cuenca existen dos cráteres gemelos con suelo fracturado (Ritter y Sabine, fotos 1 y 3), estructuras que en las cuencas con mascon delatan la deformación del borde superior, por efecto del colapso del fondo bajo la presión del magma acumulado. ¡Pero en el fondo de la cuenca del Mare Tranquillitatis no se ha detectado mascon alguno! Ritter y Sabine han llamado la atención de los selenólogos en virtud de que siendo por su aspecto de formación reciente, no poseen radiaciones ni se descubre cráteres de impacto a su alrededor. Además, carecen de pico central, tienen suelos con montuosidades anulares (Sabine) o alargadas (Ritter) y poco profundos (700 y 750 m) y los terraplenes de ambas son lisos. Todas estas razones sirvieron para dar cobijo a los últimos partidarios de la hipótesis volcánica, que explicaron la formación de dichas estructuras merced al vulcanismo. Actualmente se explica las extrañas características de sus suelos mediante la teoría de impacto meteorítico. La fractura del suelo vino provocada por el ascenso de la lava, que elevó el fondo al inundar ambas cavidades y produjo con su peso la fractura. Son pues, estructuras FFC. Curiosamente, a pesar de la proximidad con que se han formado (la distancia entre los bordes de ambos es de 2 Km), aparecieron en épocas diferentes (ver tabla VI). Alineado por el Oeste con Ritter y Sabine, existe el cráter Dyonisius, cuyo brillo lo hace inconfundible durante el plenilunio. Pero lo que hace notable a esta formación son sus cortas radiaciones obscuras, que sólo se ven bajo iluminación vertical, por lo que no fueron descubiertas hasta 1965. ¡Radiaciones obscuras! Se explican como un impacto acaecido sobre un depósito de lava o de ceniza volcánica, que el proyectil esparció en todas direcciones. Se trata, por tanto, de una clase de estructuras de impacto, denominadas “de halo obscuro”. - 5 - Foto 4.- Estructuras de impacto Arago y Carrel. Id. Volcánica, Lamont. El cupo de estructuras pseudo-volcánicas que contiene la región occidental del Mare Tranquillitatis alcanza su punto álgido en la región de Arago y Lamont (foto 4). El primero es un cráter convencional a primera vista, si bien su contorno presenta algunas irregularidades por la parte occidental que le dan un ligero aspecto cardioide, pero al examinarlo más de cerca se descubre que su pico central parece haberse derrumbado hacia el Norte. Y en efecto, con óptica de alto poder se confirma que en el interior del cráter existe una cadena orográfica que se extiende radialmente desde el centro hasta la pared Norte.
Recommended publications
  • Geologic Structure of Shallow Maria
    NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) ­ 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir­ cular basins.
    [Show full text]
  • Imps): Classification, Characteristics, Geologic 3 Settings, Updated Catalog, Origin and Outstanding Questions 4 Le Qiao1,2, James W
    Confidential manuscript submitted to Journal of Geophysical Research: Planets 1 2 Lunar Irregular Mare Patches (IMPs): Classification, Characteristics, Geologic 3 Settings, Updated Catalog, Origin and Outstanding Questions 4 Le Qiao1,2, James W. Head3, Zongcheng Ling1, and Lionel Wilson4 5 1Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of 6 Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, 7 Shandong, 264209, China. 8 2Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 9 100101, China 10 3Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 11 02912, USA. 12 4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. 13 Corresponding authors: Le Qiao ([email protected]), Zongcheng Ling ([email protected]) 14 Key Points: 15 We present an updated catalog of 91 lunar Irregular Mare Patches (IMPs) and survey the 16 geologic settings and characteristics of each IMP 17 Two classification schemes for the entire IMP population are proposed on the basis of 18 their geologic settings and characteristics 19 The characteristics of lunar IMPs are consistent with the waning-stage magmatic foam 20 extrusion origin model in different environments Confidential manuscript submitted to Journal of Geophysical Research: Planets 21 Abstract 22 One of the most mysterious lunar features discovered during the Apollo era was Ina, a ~2×3 km 23 depression composed of bleb–like mounds surrounded by hummocky and blocky terrains. 24 Subsequent studies identified dozens of similar features in lunar maria, describing them as 25 Irregular Mare Patches (IMPs). Due to the unusual and complex characteristics of IMPs, their 26 specific formation mechanism is debated.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]
  • NASA MEO Lunar Impact Candidates
    NASA Marshall Space Flight Center - Automated Lunar and Meteor Observatory (ALaMO) - Candidate lunar impact observation database Last Updated: 7-Aug-2008 By: D. Moser PRELIMINARY # of video Lunar Lunar Effective Peak Time Probable Lunar Lunar frames illum. Lunar elevation Aperture focal length MSFC Flash # Date (UT) (UT) Type longitude latitude Region (1/30 sec) fraction phase (deg) (cm) Optical config. (cm) Camera Digitizer Location Observers Press release links 1 7-Nov-05 23:40:53.0 Taurid 39.5 W 31.9 N Gruithuisen 5 0.38 wax 28.4 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC 4487 Suggs and Swift http://science.nasa.gov/headlines/y2005/22dec_lunartaurid.htm 2 2-May-06 02:34:39.0 Sporadic 19.6 W 24.3 S Bullialdus 14 0.21 wax 26.1 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm 3 4-Jun-06 04:48:35.4 Sporadic 35.8 W 11.8 S Rima Herigonius 1.5 0.52 wax 18.9 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Swift, Hollon, & Altstatt 105 21-Jun-06 08:35:45.0 Sporadic 22.7 E 2.1 N Central Mare Tranquillitatus 2 0.20 wan 15.4 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 2.5 0.21 wan 19.7 25.4 Newtonian T 119 StellaCam EX Sony GV-D800 MSFC ALAMO Moser and McNamara 4 21-Jun-06 08:57:17.5 Sporadic 62.9 E 13.9 N Mare Crisium 1.5 0.21 wan 19.7 35.5 Rit Chret SD 94 StellaCam EX Sony GV-D800 MSFC ALAMO Suggs 5 19-Jul-06 10:14:44.0 Sporadic 56 E 22 N Mare
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Moon Map and Features
    Northern Stars Planetarium Teacher Resource Sheets 1 Find more at NorthernStarsPlanetarium.com The Moon and its features This is a guide to the surface features on the Moon which you can see with binoculars or a small telescope. Northern Stars Planetarium Teacher Resource Sheets 2 Find more at NorthernStarsPlanetarium.com The Moon without labels What features can you identify? Seas? Craters? Mountains? Do you know where the astronauts landed? Northern Stars Planetarium Teacher Resource Sheets 3 Find more at NorthernStarsPlanetarium.com The Maria (or seas, oceans, bays and lakes) These do not have any water, nor are they craters, they are ancient hardened lava flows on the surface of the Moon. Listed from west to east (left to right) English name (latin name) • Ocean of Storms (Oceanus Procellarun) • Bay of Dew (Sinus Roris) • Sea of Cold (Mare Frigoris) • Bay of Rainbows (Sinus Iridum) • Sea of Showers (Mare Imbrium) • Sea of Islands (Mare Insularum) • Known Sea (Mare Cognitum) • Sea of Moisture (Mare Humorum) • Marsh of Epidemics (Palus Epidemiarum) • Sea of Clouds (Mare Nubium) • Sea of Vapors (Mare Vaporum) • Sea of Serenity (Mare Serenitatis) • Lake of Dreams (Lacus Somniorum) • Sea of Tranquility (Mare Tranquilitatis) • Bay of Love (Sinus Amoris) • Sea of Nectar (Mare Nectaris) • Southern Sea (Mare Australe) • Sea of Fertility (Mare Fecunditatis) • Sea of Crises (Mare Crisium) • Border Sea (Mare Marginis) Northern Stars Planetarium Teacher Resource Sheets 4 Find more at NorthernStarsPlanetarium.com Craters The Moon’s craters were created by meteoric impacts on the surface. There are over 5000 craters larger than 12 miles in diameter, here are a sampling of them that can be found with a small telescope or binoculars.
    [Show full text]
  • Upper Darby High School, 601 N Lansdowne Ave, Drexel Hill, PA
    Basalt Thickness of Mare Tranquillitatis using Two Methods Upper Darby High School, 601 N Lansdowne Ave, Drexel Hill, PA Gutama Biru, Chris DeMott, Galen Farmer, Daniel Gordon, Isabel Hunt, Kenneth Lin, Thomas Nguyen, Zach Thornton, Vince Tran, Most Yeasmin PROBLEM ISOPACH MAPS The purpose of this experiment is to evaluate two methods of calculating basalt thickness in Mare Tranquillitatis. Figure 1 is the original isopach map used for reference. Figures 2 and 3 are isopach maps made using 3DField software. INTRODUCTION Lunar maria are large impact craters or basins that have been filled with basalt. While the Moon was still cooling, lava seeped into these basins through cracks, cooling to form the maria. This study compares two methods of determining the thickness of basalt in Mare Tranquillitatis: the Pre-Mare Crater Method and the Post- Figure 2. Pre-Mare Crater Isopach Mare Crater Method. The first method uses craters from before the mare was formed and the latter uses craters from after the mare was formed, as the names imply. Previous work ( De HONs map reference) has been conducted using these methods to Figure 1. Reference Map (DeHon 1974) calculate mare thickness; however the tools used to collect that data are outdated. The current study, conducted using data from the Lunar Reconnaissance Orbiter and Clementine camera, compares the two methods for determining mare thickness. The Pre-Mare Crater Method used craters that were formed inside the large impact basins before they filled with lava. By measuring the diameter of these craters, the original rim height can be estimated using a relationship defined by Pike (1974, 1977).
    [Show full text]
  • Lunar II Logbook
    Astronomical League 1 Introduction and Disclaimer I made this logbook as a convenient place to keep my observations for the Astronomical League's Lunar II Club, and I offer it free of charge to the amateur astronomy community. Please note that although this logbook includes spaces for all of the required observations, it does not include all of the detailed instructions needed to complete the observations. It is intended as a supplement to the official Lunar II observing list, and not a replacement for it. The official observing list can be downloaded freely from the Astronomical League at http://www.astroleague.org/al/obsclubs/lunarII/lunarII1.html . I took the cover image by afocal projection using an Orion XT6 Dobsonian reflector and a Nikon Coolpix 4500 digital camera. It is likely that typos or other errors crept in while I was putting this together. If you find any, please let me know and I will correct them for future versions of this logbook. Clear skies, Mathew Wedel [email protected] Table of Contents and Master Checklist DTM pages refer to to pages in Discover the Moon by Jean Lacroux and Christian Legrand, published by Cambridge University Press. Obsv. # Target DTM Page Logbook Page [ ] OBSV 1-3 Full moon sketch 132 7 Describe these targets [ ] OBSV 4 Alpetragius 80 8 [ ] OBSV 5 Arago 62 [ ] OBSV 6 Arago Alpha & Arago Beta [ ] OBSV 7 Aristarchus Plateau 114 9 [ ] OBSV 8 Baco 68 [ ] OBSV 9 Bailly 128 [ ] OBSV 10 Beer, Beer Catena & Feuillée 84 10 [ ] OBSV 11 Bullialdus, Bullialdus A & Bullialdus B 94, 98 [ ] OBSV 12 Cassini,
    [Show full text]
  • AL – Lunar II Observation David M. Douglass 2017-11-23 Tempe, Arizona
    AL – Lunar II Observation David M. Douglass 2017-11-23 Tempe, Arizona #063 Sinus Concordiae #066 Taruntius Rukl Map(s) #37 The image below is cropped from my image 578 taken 20171123 Day 5.0 https://en.wikipedia.org/wiki/Sinus_Concordiae Sinus Concordiae (Latin for "Bay of Harmony") is a bay (sinus) on the Moon that lies along the eastern edge of the Mare Tranquillitatis. Along its northern border is an area called the Palus Somni, while the southern border is an area of irregular terrain that contains the ruined crater Da Vinci. The selenographic coordinates of this bay are 10.8° N, 43.2° E, and it has an overall diameter of 142 km https://en.wikipedia.org/wiki/Taruntius_(crater) Taruntius is a lunar crater on the northwestern edge of Mare Fecunditatis and is named after Lucius Taruntius Firmanus. To the northwest is the lava- flooded crater Lawrence, to the north lie the craters Watts and da Vinci and southwest is the crater Secchi. The outer rim of Taruntius is shallow, but forms a veined, complex rampart in the nearby mare, especially to the north and southwest. The rim is broken in the northwest by the small crater Cameron. The inner rim face lacks terraces, but in the interior is an unusual concentric inner rim that is heavily worn and irregular. This is a floor-fractured crater, possibly created by an uplift of mare material from beneath the interior. There is a low central peak complex in the middle of the relatively flat interior floor. There are also some slender rilles that are concentric to the rim.
    [Show full text]