<<

DFG FOR2634/1

Origins ExCl

Photoevaporation, disc dispersal and the formation and evolution of

Barbara Ercolano

University Observatory Ludwig Maximilians University Munich mass angular momentum T TT mass T angular momentum photoevaporative wind

T TT mass T angular momentum photoevaporative wind

T TT mass T Wind > angular momentum photoevaporative wind

T TT mass T Wind > accretion angular momentum T TT T Wind > accretion T TT T Wind > accretion

eg. Clarke+ 2001; Font+2004; Alexander+2016ab; Ercolano+ 2008, 2009; Gorti+2009, 2011; Owen+2010,2011ab, 2012; Wang+2017,2018; Nakatani+2018; Picogna+2019 Photoevaporation profiles

Ercolano et al 2008, 2009 Owen et al. 2010, 2011, 2012

Alexander Gorti et al. 2009 et al. 2006ab Font et al. 2004

Armitage 2011, ARAA, 49, 195 see also Alexander et al. 2014 Photoevaporation helps forming planetesimals

Removes gas & increases dust-to-gas ratio

(e.g. Throop & Bally 2005, Drawskoska et al. 2016) Photoevaporation helps forming planetesimals

Removes gas & increases dust-to-gas ratio

(e.g. Throop & Bally 2005, Drawskoska et al. 2016)

YES!!!!

Carrera, Gorti et al. (2017) Photoevaporation helps forming planetesimals

Removes gas & increases dust-to-gas ratio

(e.g. Throop & Bally 2005, Drawskoska et al. 2016)

YES!!!! NO!!!!

Carrera, Gorti et al. (2017) Jennings , Ercolano et al. (2017) Photoevaporation helps forming planetesimals

Removes gas & increases dust-to-gas ratio

(e.g. Throop & Bally 2005, Drawskoska et al. 2016)

YES!!!! NO!!!!

10 1

1000AU 100AU

Carrera, Gorti et al. (2017) Jennings , Ercolano et al. (2017) Photoevaporation helps forming planetesimals by the Photoevaporation helps forming planetesimals by the streaming instability Photoevaporation influences planetary systems architecture

T TT T migration

Proto-Jupiter Photoevaporation influences planetary systems architecture

T TT T migration

Timescale for migration ~ Myr or less (depends on the mass of the )

Lifetime of the gas disc a few Myr

Proto-Jupiter X-ray+EUV

r = rg Ercolano et al 2008, 2009 normalizedNormalised mass Owen,EUV + Ercolano X-ray et al. 2 loss rateWind r Σ wRate ionizing2010, 2011,flux 2012 FUV EUV-only FUV Gortiirradiation et al. 2009 AlexanderEUV Gorti et al. 2009 et al. 2006only Figure adapted from Armitage 2012

Distancer / AU from 1 the in AU

-1 )

jup hot, bound disk photoevaporative flow, v = few - 10 km s

Disc dispersal directly influences the architecture of planetary systems Alexander & Pascucci (2012) diffuse field

Ercolano & Rosotti (2015) 0.1 1 10 Distance from the star in AU Distributionof giant planets (>2.5 M X-ray+EUV

r = rg Ercolano et al 2008, 2009 normalizedNormalised mass Owen,EUV + Ercolano X-ray et al. 2 loss rateWind r Σ wRate ionizing2010, 2011,flux 2012 FUV EUV-only FUV Gortiirradiation et al. 2009 AlexanderEUV Gorti et al. 2009 et al. 2006only Figure adapted from Armitage 2012

Distancer / AU from 1 the star in AU

-1 )

jup hot, bound disk photoevaporative flow, atmosphere v = few - 10 km s

diffuse field

Distributionof giant planets (>2.5 M Jennings, Ercolano & Rosotti (2018) Photoevaporation matters to planet formation Photoevaporation matters to planet formation

We need a quantitative model

The models need to be benchmarked against observations Indirect Tests of Photoevaporation

— inside out dispersal from colour-colour diagrams (e.g. Ercolano+ 2015, Koepferl+ 13, Ercolano+2011)

Indirect Tests of Photoevaporation

— inside out dispersal from colour-colour diagrams (e.g. Ercolano+ 2015, Koepferl+ 13, Ercolano+2011)

inside out dispersal Indirect Tests of Photoevaporation

— inside out dispersal from colour-colour diagrams (e.g. Ercolano+ 2015, Koepferl+ 13, Ercolano+2011)

EUV

inside out dispersal X-ray FUV ? Indirect Tests of X-ray Photoevaporation

— transition disc population synthesis (e.g. Owen+ 2011, Owen & Clarke 2012, Rosotti+ 2013, Ercolano & Pascucci 2017, Ercolano+2018)

…but see Woelfer et al. in prep! Indirect Tests of X-ray Photoevaporation

— transition disc population synthesis (e.g. Owen+ 2011, Owen & Clarke 2012, Rosotti+ 2013, Ercolano & Pascucci 2017, Ercolano+2018)

EUV

X-ray ? FUV ?

…but see Woelfer et al. in prep! Indirect Tests of X-ray Photoevaporation

— metallicity dependance of disc lifetimes (e.g. Ercolano & Clarke 2010, Yasui+ 2009, 2010, 2014, Takaji+ 2015, Nakatani+ 2018)

Yasui et al 2009, 2010 Indirect Tests of X-ray Photoevaporation

— metallicity dependance of disc lifetimes (e.g. Ercolano & Clarke 2010, Yasui+ 2009, 2010, 2014, Takaji+ 2015, Nakatani+ 2018)

EUV ?

X-ray

FUV Yasui et al 2009, 2010 Indirect Tests of X-ray Photoevaporation

— Mdot-M^2 reflects the X-ray luminosity function (e.g. Ercolano+ 2014, but see also e.g.Paduan+2005, Dullemond+2006)

slope 1.8

slope 1.0

Natta, Testi & Randich, 2006 Indirect Tests of X-ray Photoevaporation

— Mdot-M^2 reflects the X-ray luminosity function (e.g. Ercolano+ 2014, but see also e.g.Paduan+2005, Dullemond+2006)

slope 1.8

EUV

slope 1.0 X-ray

FUV

Natta, Testi & Randich, 2006 Indirect Tests of X-ray Photoevaporation — the gap at 1AU in TW Hya TW Hya A photo-evaporation gap? Earth’s orbit 30 au - orbit of Neptune 1 au Ercolano, Rosotti, Picogna & Testi (2017)

Planet-carved gaps? Andrews et al. (2016)

Model predictions 22 au Rosotti, Ercolano, (2013, 2015)

37 au Planet-carved gap 10 Myr DiscRadius Atacama Large Millimetre Array (ALMA) Dust Continuum emission image Photo-evaporation gap (Andrews et al. 2016) Disc Azimuth Indirect Tests of X-ray Photoevaporation — the gap at 1AU in TW Hya TW Hya A photo-evaporation gap? Earth’s orbit 30 au - orbit of Neptune 1 au Ercolano, Rosotti, Picogna & Testi (2017)

Planet-carved gaps? Andrews et al. (2016)

Model predictions 22 au Rosotti, Ercolano, (2013, 2015)

37 au EUV ? Planet-carved gap 10 Myr X-ray DiscRadius Atacama Large Millimetre Array (ALMA) Dust Continuum emission image FUV Photo-evaporation gap (Andrews et al. 2016) ? Disc Azimuth Indirect Tests of X-ray Photoevaporation

— inside out dispersal from colour-colour diagrams (e.g. Ercolano+ 2015, Koepferl+ 13, Ercolano+2011)

— transition disc population synthesis (e.g. Owen+ 2011, Owen & Clarke 2012, Rosotti+ 2013, Ercolano & Pascucci 2017, Ercolano+2018)

— metallicity dependance of disc lifetimes (e.g. Ercolano & Clarke 2010, Yasui+ 2009, 2010, 2014, Takaji+ 2015, Nakatani+ 2018)

— Mdot-M^2 relation (e.g. Ercolano+ 2014, but see also e.g.Paduan+2005, Dullemond+2006)

— the gap at 1AU in TW Hya (e.g. Ercolano+ 2017, Andrews+ 2016) Direct Evidence/Measures of Photoevaporation

— free-free emission from the wind (e.g. Pascucci+2012, Owen+2013, Pascucci+2014)

Direct Evidence/Measures of Photoevaporation

— free-free emission from the wind (e.g. Pascucci+2012, Owen+2013, Pascucci+2014)

Direct Evidence/Measures of Photoevaporation

— free-free emission from the wind (e.g. Pascucci+2012, Owen+2013, Pascucci+2014)

Not enough EUV flux reaches disc to explain the observed NeII emission Direct Evidence/Measures of Photoevaporation

— spectral line profiles

Ercolano & Pascucci 2017 Direct Evidence/Measures of Photoevaporation

10 EUV : M˙ 10 M /yr ⇠ 8 XEUV : M˙ 10 M /yr ⇠ Two orders of magnitude difference in wind rates produce the same line profile and flux!

Ercolano & Owen 2010 Alexander 2008 Pascucci & Sterzik 2009 Direct Evidence/Measures of Photoevaporation

10 EUV : M˙ 10 M /yr ⇠ 8 XEUV : M˙ 10 M /yr ⇠ Two orders of magnitude difference in wind rates produce the same line profile and flux!

Ercolano & Owen 2010 Alexander 2008 NeII 12.8mm alone is not very useful Pascucci & Sterzik 2009 Direct Evidence/Measures of Photoevaporation

-5 -4 L(LVC) ~ 10 -10 L ⊙ [OI] 6300A a wind diagnostic? blueshifted by a few km/s

EUV wind is fully ionised HVC -6 L([OI]) < 10 L ⊙ (Font et al 2004)

LVC X-ray wind is quasi-neutral -5 L([OI]) > 10 L ⊙ (Ercolano & Owen 2010, 2016)

But see also Gorti et al. OH dissociation? see also Rigliaco et al (2013) Hartigan et al 1995 [OI] 6300 Ercolano & Owen 2016

R=25,000 R=50,000 12 18 0 10 16 10 20 30 14 40 8 50 12 60 70 10 80 6 90 8

4 6 Luminosity [Scaled] 4 2 2

0 0 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -1 Velocity [km s ] Velocity (km/s) [OI] 6300 Ercolano & Owen 2016

R=25,000 R=50,000 12 18 0 10 16 10 20 30 14 40 8 50 12 60 70 10 80 6 90 8

4 6 Luminosity [Scaled] 4 2 2

0 0 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -1 Velocity [km s ] Velocity (km/s)

Simon et al. (2016) [OI] 6300 Ercolano & Owen 2016

R=25,000 R=50,000 12 18 0 10 16 10 20 30 14 40 8 50 12 60 70 10 80 6 90 8

4 6 Luminosity [Scaled] 4 2 2

0 0 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -1 Velocity [km s ] Velocity (km/s)

Banzatti+2018

Simon et al. (2016) [OI] 6300 Ercolano & Owen 2016

R=25,000 R=50,000 12 18 0 10 16 10 20 30 14 40 8 50 12 60 70 10 80 6 90 8

4 6 Luminosity [Scaled] 4 2 2

0 0 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -1 Velocity [km s ] Velocity (km/s)

Banzatti+2018

Simon et al. (2016) Broad Component from MHD wind?

Ercolano & Pascucci 2017 Alternative Explanation: Lamp-post jet illumination of a photoevaporative wind

DG Tau (credit M. Guedel) Alternative Explanation: Lamp-post jet illumination of a photoevaporative wind Alternative Explanation: Lamp-post jet illumination of a photoevaporative wind

Preliminary results for standard wind model with DG-Tau like jet

Profile strongly depends on details of illumination (height, luminosity of jet) and wind parameters. Conclusions

— Photoevaporation can strongly influence planet formation and evolution

— Photoevaporation models must gain enough predictive power to be compared with observation

— Several indirect observational tests are not in disagreement with theoretical models

— Spectral line profiles are an important test, but their interpretation is also model dependent