Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Angular Momentum of Condensations Within Elephant Trunks
A&A 503, 477–482 (2009) Astronomy DOI: 10.1051/0004-6361/200912238 & c ESO 2009 Astrophysics The angular momentum of condensations within elephant trunks V. L ora 1,A.C.Raga2, and A. Esquivel2 1 Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-468, 04510, D.F México 2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510, D.F México e-mail: [email protected] Received 31 March 2009 / Accepted 22 May 2009 ABSTRACT Aims. The radiation from newly born stars photoevaporates their parental neutral cloud, leading to the formation of dense clumps that will eventually form stars. Methods. We present 3D simulations of the interaction of a neutral cloud with an external ionising radiation field, and compute the angular momenta of these collapsing clumps. Results. The angular momenta of these collapsing clumps show that they have preferential orientations mostly perpendicular to the direction of the incident ionising photon field. Therefore, the axes of the jet systems that will be eventually ejected (from the star+accretion disk systems that will form) will be oriented approximately perpendicular to the direction to the photoionising source. Key words. ISM: kinematics and dynamics – ISM: clouds – ISM: HII regions – stars: formation 1. Introduction of elephant trunks is quite small, their alignment approximately perpendicular to the direction to the ionising photon source The radiation from newly born stars photoionises and erodes the might be indicative of a systematic alignment. This alignment parental cloud, producing structures such as the so-called ele- implies that the angular momenta of the low mass star+disk sys- phant trunks. -
A Spitzer Survey of Protoplanetary Disk Dust in the Young Serpens Cloud: How Do Dust Characteristics Evolve with Time?
The Astrophysical Journal, 714:778–798, 2010 May 1 doi:10.1088/0004-637X/714/1/778 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME? Isa Oliveira1,2, Klaus M. Pontoppidan2, Bruno Mer´ın3, Ewine F. van Dishoeck1,4, Fred Lahuis1,5, Vincent C. Geers6, Jes K. Jørgensen7, Johan Olofsson8, Jean-Charles Augereau8, and Joanna M. Brown4 1 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands; [email protected] 2 California Institute of Technology, Division for Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125, USA 3 Herschel Science Center, European Space Agency (ESA), P.O. Box 78, 28691 Villanueva de la Canada˜ (Madrid), Spain 4 Max-Planck Institut fur¨ Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 5 SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen, The Netherlands 6 University of Toronto, 50 St. George St., Toronto, ON M5R 2W9, Canada 7 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark 8 Laboratoire d’Astrophysique de Grenoble, Universite´ Joseph Fourier, CNRS, UMR 5571, Grenoble, France Received 2009 December 28; accepted 2010 March 16; published 2010 April 14 ABSTRACT We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5–35 μm) spectra of a complete flux-limited sample (3mJyat8μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. -
The Potential to Form Planets in the Orion Nebula ! Rita Mann Plaskett Fellow NRC-Herzberg
The Potential to Form Planets in the Orion Nebula ! Rita Mann Plaskett Fellow NRC-Herzberg ! James Di Francesco, Sean Andrews, Jonathan Williams, Doug Johnstone, John Bally, Meredith Hughes, Luca Ricci, Brenda Matthews Protoplanetary Disks in the Orion Nebula Most stars form in rich clusters Our Solar System formed in a massive star forming environment. To understand planet formation, we need to study disk properties in massive star forming regions! HST images of protostars in Orion Orion Nebula Cluster Trapezium Cluster • Thousands of protostars • Ages ~ 1-2 Myr • Distance ~ 400 pc 1 • θ Ori C, 40M¤, O6 SpT Orion Nebula Cluster Massive Stars • Hostile environment • Many low mass stars near ϑ1C have teardrop shaped morphologies Low Mass Stars PROPLYDS: PROtoPLanetarY DiskS Photoevaporating Proplyds -7 VLA mass-loss rate of 10 M¤/yr Churchwell et al. (1987) Mdisk < 0.1 M¤ Evaporation Timescales < 1 Myr Material removed too quickly! C.R. O’Dell Is planet formation inhibited in rich clusters? Disk Masses in Orion: Previous Attempts Millimeter Wavelength Interferometers (clustered disks) BIMA OVRO PdBI Mundy et al. (1995) Bally et al. (1998) Lada (1999) λ = 3.5 mm λ = 1.3 mm λ = 1.3 mm low sensitivity no detections never published Mdisk ≲ 15 MJUP Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm 1 mm Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm 1 mm Higher frequency observations: more sensitive to dust emission! Interferometry with -
Studies of Photoevaporating Protoplanetary Discs from the VLT To
Photoevaporating protoplanetary discs from the VLT to the E-ELT era Yiannis Tsamis [email protected] J. R. Walsh, W. J. Henney, N. Flores-Fajardo, J. M. Vilchez, D. Pequignot, A. Mesa-Delgado 1. Introduction and rationale LV2 (Orion) Proplyds are evaporating protoplanetary disks around young stars in H II regions (e.g. McCaughrean & O'Dell 1996; Mann & Williams 2010). The archetypal proplyds were identified within Orion, associated with low-mass star formation reminiscent of the protosolar nebula. They are clustered near the hot massive stars of the Trapezium. Massive stellar associations, such as Orion, are thought to represent the closest analogues to the birth environment of our solar system (Adams 2010). Proplyds are thus important to both planetary science and astrophysics. The E-ELT should revolutionize their study. The elemental content and chemistry of proplyds are virtually unknown, but studies of their composition may help to elucidate (a) the origin of the Metallicity – Giant Planet Frequency correlation (Petigura & Marcy 2011), (ii) mechanisms of disk dispersal, (iii) grain-growth and planetesimal formation in externally irradiated disks. Until very recently there have been no observational studies devoted to the elemental composition of Orion-like disks to provide constraints on planet formation theory. Our programme (Tsamis et al. 2011; Tsamis & Walsh 2011; Tsamis et al. 2013) is yielding the first inventory of proplyd He, C, N, O, Ne, S, Cl, Ar, Fe abundances: these are accessible via the analysis of their forbidden and permitted emission lines in far-UV to near-IR spectra. Here studies of Orion proplyds LV 2 and HST 10 are presented, based on VLT FLAMES optical integral field spectroscopy (Fig. -
Photoevaporation of Protoplanetary Disks by UV Photons from Nearby Massive Stars : Observations of Proplyds and Modeling Jason Champion
Photoevaporation of protoplanetary disks by UV photons from nearby massive stars : observations of proplyds and modeling Jason Champion To cite this version: Jason Champion. Photoevaporation of protoplanetary disks by UV photons from nearby massive stars : observations of proplyds and modeling. Solar and Stellar Astrophysics [astro-ph.SR]. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30392. tel-02307075 HAL Id: tel-02307075 https://tel.archives-ouvertes.fr/tel-02307075 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´ee et soutenue le 25/09/2017 par : Jason CHAMPION Photoevaporation des disques protoplanétaires par les photons UV d’étoiles massives proches : observation de proplyds et modélisation JURY Maryvonne GERIN Directeur de Recherche Pr´esident du Jury Yann ALIBERT Maître de Conférence Rapporteur Emilie HABART Charg´ede Recherche Examinateur Karine DEMYK Directeur de Recherche Examinateur Emmanuel CAUX Directeur de Recherche Examinateur Olivier BERNE Charg´ede Recherche Directeur de Thèse Ecole´ doctorale et sp´ecialit´e : SDU2E : Astrophysique, Sciences de l’Espace, Plan´etologie Unit´e de Recherche : Institut de Recherche en Astrophysique et Plan´etologie (UMR 5277) Directeur de Th`ese : Olivier BERNE Rapporteurs : Maryvonne GERIN et Yann ALIBERT ii Remerciements Enfin, nous pouvons commencer. -
The Birth of Stars and Planets
Unit 6: The Birth of Stars and Planets This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion questions at the end of each topic in this Unit. These should give more background on each subject and spark further classroom ideas. We would be happy to help you expand on each topic and develop your own ideas for your students. Contact us at the [email protected]. Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them. -
ALMA Observations of Irradiated Protoplanetary Disks
ALMAALMA ObservationsObservations ofof IrradiatedIrradiated ProtoplanetaryProtoplanetary DisksDisks John Bally 1 Henry Throop 2 1,2 Center for Astrophysics and Space Astronomy 1Department of Astrophysical and Planetary Sciences University of Colorado, Boulder 2Southwest Research Institute (SWRI), Boulder YSOs near massive stars: UV photo-ablation of disks irradiated jets d253-535 in M43 OutlineOutline • Most stars and planets form in clusters / OB associations: (Lada & Lada 03) - UV: External (OB stars) + Self-irradiation => Disk photo-ablation => mass loss: EUV, FUV Review Orion’s proplyds => Metal depletion in wind / enrichment of disk => UV-triggered planetesimal formation = Jets => active accretion => disks - Carina - The Bolocam 1.1 mm survey of the Galactic plane • What will ALMA Contribute?: [5 to 50 mas resolution!] - Surveys of HII regions & clusters (Orion, Carina, …) - Best done as community-led Legacy surveys => Clusters of sources: disk radii, masses, I-front radii => Resolve ionized flows, disks features, protoplanets f-f, recombination lines, entrained hot dust => Neutral flow composition, velocity, structure CI, CO, dust, photo-chemistry products => Disk B (Zeeman & dust), composition, structure, gaps the organic forest ALMAALMA && irradiatedirradiated disksdisks 10 µµµJy sensitivity & 10 mas resolution 3 mm 1.3 mm 850 µµµm 450 µµµm 350 µµµm Band 3 6 7 9 10 Resolution 0.04” 0.019” 0.013” 0.007” 0.005” (B = 14 km) AU AU AU AU AU Sco-Cen 6 3 2 1 0.7 (150 pc) Orion 17 8 6 3 2 (430 pc) Carina 90 42 29 15 11 (2,200) The Orion/Eridanus -
Arxiv:1610.05765V3 [Astro-Ph.EP] 27 Feb 2017 3.3 Microlensing and Direct Imaging
The Habitability of Planets Orbiting M-dwarf Stars Aomawa L. Shields1;2;4, Sarah Ballard3, John Asher Johnson4 1University of California, Irvine, Department of Physics and Astronomy, 4129 Frederick Reines Hall, Irvine, CA 92697, USA 2University of California, Los Angeles, Department of Physics and Astronomy, Box 951547, Los Angeles, CA 90095, USA 3Massachusetts Institute of Technology, 77 Massachusetts Ave, 37-241, Cambridge, MA 02139, USA 4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Abstract The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun- like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge gaps that existed at the time of the previous overview papers published nearly a decade ago by Tarter et al. -
Worlds Apart - Finding Exoplanets
Worlds Apart - Finding Exoplanets Illustrated Video Credit: NASA, JPL-Caltech, T. Pyle; Acknowledgement: djxatlanta Dr. Billy Teets Vanderbilt University Dyer Observatory Osher Lifelong Learning Institute Thursday, November 5, 2020 Outline • A bit of info and history about planet formation theory. • A discussion of the main exoplanet detection techniques including some of the missions and telescopes that are searching the skies. • A few examples of “notable” results. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. Retrograde Motion - Mars Image Credits: Tunc Tezel Retrograde Motion as Explained by Ptolemy To explain retrograde, the concept of the epicycle was introduced. A planet would move on the epicycle (the smaller circle) as the epicycle went around the Earth on the deferent (the larger circle). The planet would appear to shift back and forth among the background stars. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. -
Transition Disks – Grain Growth, Planets, Or Photoevaporation?
EPJ Web of Conferences 46, 02001 (2013) DOI: 10.1051/epjconf/20134602001 © Owned by the authors, published by EDP Sciences, 2013 Transition Disks – Grain Growth, Planets, or Photoevaporation? T. Birnstiel1;2;a, P. Pinilla3, S. M. Andrews4, M. Benisty5, and B. Ercolano1;2 1University Observatory Munich, Scheinerstr. 1, D-81679 München, Germany 2Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, 85748 Garching, Germany 3Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France Abstract. In the past years, many transition disks have been detected via SED modeling or imaging. The disks feature dust cavities in their inner regions with sizes ranging from a few to more than 70 AU. The origin of those structures, however, remains mysterious. We will present how our recent simulation results, which include gap opening by a giant planet and effects of dust evolution, could explain these structures. 1 Introduction While today’s instruments enable detailed studies of extrasolar planets, their statistics [1–3], or their atmospheres [4–6], their formation occurs hidden in the dense environments of protoplanetary disks. A particular class of protoplanetary disks, the so called transition disks, has been identified through a dip at mid-infrared wavelengths which could be modeled through a dearth of dust in the inner regions [7]. In recent years, (sub-)millimeter imaging has confirmed that these disks have a substantial deficit in their dust surface density in the inner regions [8–17]. -
The Dispersal of Planet-Forming Discs: Theory Confronts Observations Rsos.Royalsocietypublishing.Org Barbara Ercolano1,2, Ilaria Pascucci3,4
The Dispersal of Planet-forming discs: Theory confronts Observations rsos.royalsocietypublishing.org Barbara Ercolano1;2, Ilaria Pascucci3;4 1Universitäts-Sternwarte München, Scheinerstr. 1, Research 81679 München, Germany 2Excellence Cluster Origin and Structure of the Article submitted to journal Universe, Boltzmannstr.2, 85748 Garching bei München, Germany 3Lunar and Planetary Laboratory, The University of Subject Areas: Arizona, Tucson, AZ 85721, USA Astrophysics 4Earths in Other Solar Systems Team, NASA Nexus Keywords: for Exoplanet System Science Protoplanetary Disks, Planet Formation Discs of gas and dust around Myr-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their Author for correspondence: evolution and dispersal directly impact what type ercolanousm.lmu.de of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress. ............ arXiv:1704.00214v2 [astro-ph.EP] 4 Apr 2017 c 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited. -
X-Ray Emission from Orion Nebula Cluster Stars with Circumstellar Disks and Jets Joel H
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RIT Scholar Works Rochester Institute of Technology RIT Scholar Works Articles 2005 X-Ray Emission from Orion Nebula Cluster Stars with Circumstellar Disks and Jets Joel H. Kastner Rochester Institute of Technology Geoffrey Franz Rochester Institute of Technology Nicolas Grosso Universite Joseph-Fourier John Bally University of Colorado Mark J. McCaughrean Astrophysikalisches Institut Postdam See next page for additional authors Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Joel H. Kastner et al 2005 ApJS 160 511 https://doi.org/10.1086/432096 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Authors Joel H. Kastner, Geoffrey Franz, Nicolas Grosso, John Bally, Mark J. McCaughrean, Konstantin Getman, Eric D. Feigelson, and Norbert S. Schulz This article is available at RIT Scholar Works: http://scholarworks.rit.edu/article/862 The Astrophysical Journal Supplement Series, 160:511–529, 2005 October A # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. X-RAY EMISSION FROM ORION NEBULA CLUSTER STARS WITH CIRCUMSTELLAR DISKS AND JETS Joel H. Kastner,1 Geoffrey Franz,1 Nicolas Grosso,2 John Bally,3 Mark J. McCaughrean,4 Konstantin Getman,5 Eric D. Feigelson,5 and Norbert S. Schulz6 Received 2005 February 2; accepted 2005 May 13 ABSTRACT We investigate the X-ray and near-infrared emission properties of a sample of pre–main-sequence (PMS) stellar systems in the Orion Nebula Cluster (ONC) that display evidence for circumstellar disks (‘‘proplyds’’) and optical jets in Hubble Space Telescope (HST ) imaging.