Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars. -
The Angular Momentum of Condensations Within Elephant Trunks
A&A 503, 477–482 (2009) Astronomy DOI: 10.1051/0004-6361/200912238 & c ESO 2009 Astrophysics The angular momentum of condensations within elephant trunks V. L ora 1,A.C.Raga2, and A. Esquivel2 1 Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-468, 04510, D.F México 2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510, D.F México e-mail: [email protected] Received 31 March 2009 / Accepted 22 May 2009 ABSTRACT Aims. The radiation from newly born stars photoevaporates their parental neutral cloud, leading to the formation of dense clumps that will eventually form stars. Methods. We present 3D simulations of the interaction of a neutral cloud with an external ionising radiation field, and compute the angular momenta of these collapsing clumps. Results. The angular momenta of these collapsing clumps show that they have preferential orientations mostly perpendicular to the direction of the incident ionising photon field. Therefore, the axes of the jet systems that will be eventually ejected (from the star+accretion disk systems that will form) will be oriented approximately perpendicular to the direction to the photoionising source. Key words. ISM: kinematics and dynamics – ISM: clouds – ISM: HII regions – stars: formation 1. Introduction of elephant trunks is quite small, their alignment approximately perpendicular to the direction to the ionising photon source The radiation from newly born stars photoionises and erodes the might be indicative of a systematic alignment. This alignment parental cloud, producing structures such as the so-called ele- implies that the angular momenta of the low mass star+disk sys- phant trunks. -
A Spitzer Survey of Protoplanetary Disk Dust in the Young Serpens Cloud: How Do Dust Characteristics Evolve with Time?
The Astrophysical Journal, 714:778–798, 2010 May 1 doi:10.1088/0004-637X/714/1/778 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME? Isa Oliveira1,2, Klaus M. Pontoppidan2, Bruno Mer´ın3, Ewine F. van Dishoeck1,4, Fred Lahuis1,5, Vincent C. Geers6, Jes K. Jørgensen7, Johan Olofsson8, Jean-Charles Augereau8, and Joanna M. Brown4 1 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands; [email protected] 2 California Institute of Technology, Division for Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125, USA 3 Herschel Science Center, European Space Agency (ESA), P.O. Box 78, 28691 Villanueva de la Canada˜ (Madrid), Spain 4 Max-Planck Institut fur¨ Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 5 SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen, The Netherlands 6 University of Toronto, 50 St. George St., Toronto, ON M5R 2W9, Canada 7 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark 8 Laboratoire d’Astrophysique de Grenoble, Universite´ Joseph Fourier, CNRS, UMR 5571, Grenoble, France Received 2009 December 28; accepted 2010 March 16; published 2010 April 14 ABSTRACT We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5–35 μm) spectra of a complete flux-limited sample (3mJyat8μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. -
The Potential to Form Planets in the Orion Nebula ! Rita Mann Plaskett Fellow NRC-Herzberg
The Potential to Form Planets in the Orion Nebula ! Rita Mann Plaskett Fellow NRC-Herzberg ! James Di Francesco, Sean Andrews, Jonathan Williams, Doug Johnstone, John Bally, Meredith Hughes, Luca Ricci, Brenda Matthews Protoplanetary Disks in the Orion Nebula Most stars form in rich clusters Our Solar System formed in a massive star forming environment. To understand planet formation, we need to study disk properties in massive star forming regions! HST images of protostars in Orion Orion Nebula Cluster Trapezium Cluster • Thousands of protostars • Ages ~ 1-2 Myr • Distance ~ 400 pc 1 • θ Ori C, 40M¤, O6 SpT Orion Nebula Cluster Massive Stars • Hostile environment • Many low mass stars near ϑ1C have teardrop shaped morphologies Low Mass Stars PROPLYDS: PROtoPLanetarY DiskS Photoevaporating Proplyds -7 VLA mass-loss rate of 10 M¤/yr Churchwell et al. (1987) Mdisk < 0.1 M¤ Evaporation Timescales < 1 Myr Material removed too quickly! C.R. O’Dell Is planet formation inhibited in rich clusters? Disk Masses in Orion: Previous Attempts Millimeter Wavelength Interferometers (clustered disks) BIMA OVRO PdBI Mundy et al. (1995) Bally et al. (1998) Lada (1999) λ = 3.5 mm λ = 1.3 mm λ = 1.3 mm low sensitivity no detections never published Mdisk ≲ 15 MJUP Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm 1 mm Radio-Submillimeter SED -0.1 2-4 Ffree-free ~ ν + Fdust ~ ν λ = 1 cm 1 mm Higher frequency observations: more sensitive to dust emission! Interferometry with -
The Agb Newsletter
THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Abundances in Red Giants No. 208 — 1 November 2014 http://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Dear Colleagues, It is our pleasure to present you the 208th issue of the AGB Newsletter. The variety of topics is, as usual, enormous, though post-AGB phases feature prominently, as does R Scuti this time. Don’t miss the announcements of the Olivier Chesneau Prize, and of three workshops to keep you busy and entertained over the course of May–July next year. We look forward to receiving your reactions to this month’s Food for Thought (see below)! The next issue is planned to be distributed around the 1st of December. Editorially Yours, Jacco van Loon, Ambra Nanni and Albert Zijlstra Food for Thought This month’s thought-provoking statement is: What is your favourite AGB star, RSG, post-AGB object, post-RSG or PN? And why? Reactions to this statement or suggestions for next month’s statement can be e-mailed to [email protected] (please state whether you wish to remain anonymous) 1 Refereed Journal Papers Evolutionary status of the active star PZ Mon Yu.V. Pakhomov1, N.N. Chugai1, N.I. Bondar2, N.A. Gorynya1,3 and E.A. Semenko4 1Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 119017, Moscow, Russia 2Crimean Astrophysical Observatory, Nauchny, Crimea, 2984009, Russia 3Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetskij prospekt, 13, Moscow 119991, Russia 4Special Astrophysical Observatory of Russian Academy of Sciences, Russia We use original spectra and available photometric data to recover parameters of the stellar atmosphere of PZ Mon, formerly referred as an active red dwarf. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Astronomy 2008 Index
Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs. -
Spectroscopy of Variable Stars
Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
134, December 2007
British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 134, December 2007 Contents AB Andromedae Primary Minima ......................................... inside front cover From the Director ............................................................................................. 1 Recurrent Objects Programme and Long Term Polar Programme News............4 Eclipsing Binary News ..................................................................................... 5 Chart News ...................................................................................................... 7 CE Lyncis ......................................................................................................... 9 New Chart for CE and SV Lyncis ........................................................ 10 SV Lyncis Light Curves 1971-2007 ............................................................... 11 An Introduction to Measuring Variable Stars using a CCD Camera..............13 Cataclysmic Variables-Some Recent Experiences ........................................... 16 The UK Virtual Observatory ......................................................................... 18 A New Infrared Variable in Scutum ................................................................ 22 The Life and Times of Charles Frederick Butterworth, FRAS........................24 A Hard Day’s Night: Day-to-Day Photometry of Vega and Beta Lyrae.........28 Delta Cephei, 2007 ......................................................................................... 33 -
Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models. -
Appendix: Spectroscopy of Variable Stars
Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms).