134, December 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work. -
Mathématiques Et Espace
Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée. -
Sky Notes - April 2012
North Devon Astronomical Society www.northdevonastronomy.co.uk Sky Notes - April 2012 THE MOON New Moon 21s t April First Quarter 29th April Full Moon 6th April Last Quarter 13th April THE PLANETS Mercury A morning object, Mercury is visible before sunrise by the middle of the month. The planet will reach greatest western elongation on the 18th, when it will be around 27 degrees from the Sun. Venus Now moving closer to the Sun once again following greatest elongation last month, but blazing away at magnitude -4.4, Venus still dominates the western evening sky. In the eyepiece, the planet presents a 25 arcsecond disc which is just under half illuminated. Mars Following last month’s opposition, The Red Planet remains fairly close to the bright star Regulus, in the constellation Leo. Though the apparent diameter of the planet will shrink slightly throughout the month, Mars remains worthy of observation and is visible for most of the night. Jupiter Though still visible low in the west after sunset, Jupiter will soon become lost in the evening twilight. Saturn R eaching opposition on the 15th, Saturn is observable all night in the constellation Virgo, close to the first magnitude star Spica, (Alpha Virginis). A magnificent object, Saturn’s rings and it’s largest satellite Titan are readily apparent in small telescopes, while larger instruments will show atmospheric bands and some of the smaller moons. Uranus Ur anus is too close to the Sun to be observable this month. Neptune A morning object, Neptune can be found among the stars of the constellation Aquarius. -
Explore the Universe Observing Certificate Second Edition
RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object. -
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
The Heavens in August a Study of Short Period Variables
100 SCIENTIFIC,AMERlCAN July 31, 1915 The Heavens in August A Study of Short Period Variables By Prof. Henry Norris Russell, Ph.D. HE warm clear nights of summer offer the amateur which is marked on our map, .and the second lies about and but 18 minutes of arc apart, while Neptune is only T the best chance for star-gazing in all the year, and, two fifths of the way from this to () Ophiuchi (also a degree away on the other side. This simultaneous fortunately, he has one of the finest portions of the shown on the map) and is the only bright star near conjunction of three planets is rather remarkable, but, heavens at his command in the splendid region of the this line. The character of the variation is in both as they rise less than an hour earlier than the Sun, Milky Way, which stretches from Cassiopeia and cases very similar to that of the stars previously de Neptune will be utterly invisible, though the other two Cygnus through Aquila to Sagittarius and Scorpio, and scribed. w Sagittarii varies from magnitude 4.3 to 5.1 planets may easily be seen with a telescope (provided forms a vast circle right across the summit of the vault in a period of 7.595 days, the ris� in brightness taking with suitable finding circles ) even in broad daylight, of heaven. about half as long as the fall, and the maximum being and in the same low-power field. The veriest novice can learn in an hour to identify a little more than twice the minimum light. -
Information Bulletin on Variable Stars
COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November ::::::::::::::::::::::::::::::::::::::: -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
Martian Ice How One Neutrino Changed Astrophysics Remembering Two Former League Presidents
Published by the Astronomical League Vol. 71, No. 3 June 2019 MARTIAN ICE HOW ONE NEUTRINO 7.20.69 CHANGED ASTROPHYSICS 5YEARS REMEMBERING TWO APOLLO 11 FORMER LEAGUE PRESIDENTS ONOMY T STR O T A H G E N P I E G O Contents N P I L R E B 4 . President’s Corner ASTRONOMY DAY Join a Tour This Year! 4 . All Things Astronomical 6 . Full Steam Ahead OCTOBER 5, From 37,000 feet above the Pacific Total Eclipse Flight: Chile 7 . Night Sky Network 2019 Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page Astronomy seeing up to 3¼ minutes of totality in a PAGE 4 9 . Wanderers in the Neighborhood dark sky that makes the Sun’s corona look Day Handbook full of ideas and incredibly dramatic. Our flight will de- 10 . Deep Sky Objects suggestions, go to: part from and return to Santiago, Chile. skyandtelescope.com/2019eclipseflight www.astroleague.org Click 12 . International Dark-Sky Association on "Astronomy Day” Scroll 14 . Fire & Ice: How One Neutrino down to "Free Astronomy Day African Stargazing Safari Join astronomer Stephen James ̃̃̃Changed a Field Handbook" O’Meara in wildlife-rich Botswana July 29–August 4, 2019 for evening stargazing and daytime PAGE 14 18 . Remembering Two Former For more information, contact: safari drives at three luxury field ̃̃̃Astronomical League Presidents Gary Tomlinson camps. Only 16 spaces available! Astronomy Day Coordinator Optional extension to Victoria Falls. 21 . Coming Events [email protected] skyandtelescope.com/botswana2019 22 . Gallery—Moon Shots 25 . Observing Awards Iceland Aurorae September 26–October 2, 2019 26 . -
Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation
galaxies Review Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation Helen Rovithis-Livaniou Department of Astrophysics, Astronomy & Mechanics, Faculty of Physics, Panepistimiopolis, Zografos, Athens University, 15784 Athens, Greece; [email protected]; Tel.: +30-21-0984-7232 Received: 10 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: The continuous improvement in observational methods of eclipsing binaries, EBs, yield more accurate data, while the development of their light curves, that is magnitude versus time, analysis yield more precise results. Even so, and in spite the large number of EBs and the huge amount of observational data obtained mainly by space missions, the ways of getting the appropriate information for their physical parameters etc. is either from their light curves and/or from their period variations via the study of their (O-C) diagrams. The latter express the differences between the observed, O, and the calculated, C, times of minimum light. Thus, old and new light curves analysis methods of EBs to obtain their principal parameters will be considered, with examples mainly from our own observational material, and their subsequent light curves analysis using either old or new methods. Similarly, the orbital period changes of EBs via their (O-C) diagrams are referred to with emphasis on the use of continuous methods for their treatment in absence of sudden or abrupt events. Finally, a general discussion is given concerning these two topics as well as to a few related subjects. Keywords: eclipsing binaries; light curves analysis/synthesis; minima times and (O-C) diagrams 1. Introduction A lot of time has passed since the primitive observations of EBs made with naked eye till today’s space surveys. -
Algol, Beta Lyrae, and W Serpentis: Some New Results for Three Well Studied Eclipsing Binaries
ALGOL, BETA LYRAE, AND W SERPENTIS: SOME NEW RESULTS FOR THREE WELL STUDIED ECLIPSING BINARIES Edward F. Guinan Department of Astronomy Si Astrophysics Villanova University Villanova, PA 19085 U.S.A. (Received 20 October, 1988 - accepted 20 March, 1989) ABSTRACT. The properties of the eclipsing binaries Algol, Beta Lyrae, and W Serpentis are discussed and new results are presented. The physical properties of the components of Algol are now Hell determined. High resolution spectroscopy of the H-alpha feature by Richards et »1. and by Billet et al. and spectroscopy of the ultraviolet resonance lines with the International Ultraviolet Explorer satellite reveal hot gas around the B8V primary. Gas flows also have been detected apparently originating from the low mast, cooler secondary component and flowing toward the hotter star through the Lagrangian LI point. Analysis of 6 years of multi-bandpass photoelectric photometry of Beta Lyrae indicates that systematic changes in light curves occur with a characteristic period of *275 * 25 dayt. These changes may arise from pulsations of the B8II star or from changes in the geometry of the disk component. Hitherto unpublished u, v, b, y, and H-alpha index light curves of N Ser are presented and discutted. W Ser is a very complex binary system that undergoet complicated, large changes in its light curvet. The physical properties of H Ser are only poorly known, but it probably contains one component at its Roche turface, rapidly transfering matter to a component which it embedded in a thick, opaque disk. In several respects, W Ser resembles an upscale version of a cataclysmic variable binary system.