Physical Processes in the Interstellar Medium

Total Page:16

File Type:pdf, Size:1020Kb

Physical Processes in the Interstellar Medium Physical Processes in the Interstellar Medium Ralf S. Klessen and Simon C. O. Glover Abstract Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understand- ing its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolu- tion, the formation of stars, cosmic nucleosynthesis, the origin of large com- plex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental building blocks of planets, all these processes are intimately coupled to the physics of the interstellar medium. However, despite its importance, its structure and evolution is still not fully understood. Observations reveal that the interstellar medium is highly tur- bulent, consists of different chemical phases, and is characterized by complex structure on all resolvable spatial and temporal scales. Our current numerical and theoretical models describe it as a strongly coupled system that is far from equilibrium and where the different components are intricately linked to- gether by complex feedback loops. Describing the interstellar medium is truly a multi-scale and multi-physics problem. In these lecture notes we introduce the microphysics necessary to better understand the interstellar medium. We review the relations between large-scale and small-scale dynamics, we con- sider turbulence as one of the key drivers of galactic evolution, and we review the physical processes that lead to the formation of dense molecular clouds and that govern stellar birth in their interior. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany e-mail: [email protected], [email protected] 1 Contents Physical Processes in the Interstellar Medium ................ 1 Ralf S. Klessen and Simon C. O. Glover 1 Introduction . .4 2 Composition of the ISM . .8 2.1 Gas . .8 2.2 Dust . 11 2.3 Interstellar radiation field . 13 2.4 Cosmic rays . 18 3 Heating and cooling of interstellar gas . 21 3.1 Optically-thin two-level atom . 21 3.2 Effects of line opacity . 26 3.3 Multi-level systems . 29 3.4 Atomic and molecular coolants in the ISM . 31 3.5 Gas-grain energy transfer . 41 3.6 Computing the dust temperature . 44 3.7 Photoelectric heating . 47 3.8 Other processes responsible for heating . 50 4 ISM Turbulence . 55 4.1 Observations . 55 4.2 Simple theoretical considerations . 65 4.3 Scales of ISM Turbulence . 71 4.4 Decay of ISM turbulence . 75 4.5 Sources of ISM turbulence: gravity and rotation. 77 4.6 Sources of ISM turbulence: stellar feedback . 82 5 Formation of molecular clouds . 90 5.1 Transition from atomic to molecular gas . 90 5.2 Importance of dust shielding . 101 5.3 Molecular cloud formation in a galactic context . 104 6 Star formation . 110 6.1 Molecular cloud cores as sites of star formation . 110 6.2 Statistical properties of stars and star clusters . 116 3 4 Introduction 6.3 Gravoturbulent star formation . 120 6.4 Theoretical models for the origin of the IMF . 123 6.5 Massive star formation . 137 6.6 Final stages of star and planet formation . 139 7 Summary . 142 References . 146 1 Introduction Understanding the physical processes that govern the dynamical behavior of the interstellar medium (ISM) is central to much of modern astronomy and astrophysics. The ISM is the primary galactic repository out of which stars are born and into which they deposit energy, momentum and enriched material as they die. It constitutes the anchor point of the galactic matter cycle, and as such is the key to a consistent picture of galaxy formation and evolution. The dynamics of the ISM determines where and when stars form. Similarly, the properties of the planets and planetary systems around these stars are intimately connected to the properties of their host stars and the details of their formation process. When we look at the sky on a clear night, we can notice dark patches of obscuration along the band of the Milky Way. These are clouds of dust and gas that block the light from distant stars. With the current set of telescopes and satellites we can observe dark clouds at essentially all frequencies possi- ble, ranging from low-energy radio waves all the way up to highly energetic γ-rays. We have learned that all star formation occurring in the Milky Way and other galaxies is associated with these dark clouds that mostly consist of cold molecular hydrogen and dust. In general, these dense clouds are embed- ded in and dynamically connected to the larger-scale and less dense atomic component. Once stellar birth sets in, feedback becomes important. Massive stars emit copious amounts of ionizing photons and create bubbles of hot ionized plasma, thus converting ISM material into a hot and very tenuous state. We shall see in this lecture that we cannot understand the large-scale dynamics of the ISM without profound knowledge of the underlying micro- physics. And vice versa, we will argue that dynamical processes on large galactic scales determine the local properties of the different phases of the ISM, such as their ability to cool and collapse, and to give birth to new stars. ISM dynamics spans a wide range of spatial scales, from the extent of the galaxy as a whole down to the local blobs of gas that collapse to form individual stars or binary systems. Similarly, it covers many decades in tem- poral scales, from the hundreds of millions of years it takes to complete one galactic rotation down to the hundreds of years it takes an ionization front to travel through a star-forming cloud. This wide range of scales is intricately Ralf Klessen & Simon Glover 5 linked by a number of competing feedback loops. Altogether, characterizing the ISM is truly a multi-scale and multi-physics problem. It requires insights from quantum physics and chemistry, as well as knowledge of magnetohy- drodynamics, plasma physics, and gravitational dynamics. It also demands a deep understanding of the coupling between matter and radiation, together with input from high-resolution multi-frequency and multi-messenger astro- nomical observations. By mass, the ISM consists of around 70% hydrogen (H), 28% helium (He), and 2% heavier elements. The latter are generally termed metals in the some- times very crude astronomical nomenclature. We give a detailed account of the composition of the ISM in Section 2. Because helium is chemically inert, it is customary, and indeed highly practical, to distinguish the different phases of the ISM by the chemical state of hydrogen. Ionized bubbles are called Hii regions, while atomic gas is often termed Hi gas, in both cases referring to the spectroscopic notation. Hii regions are best observed by looking at hydrogen recombination lines or the fine structure lines of ionized heavy atoms. The properties of Hi gas are best studied via the 21cm hyperfine structure line of hydrogen. Dark clouds are sufficiently dense and well-shielded against the dissociating effects of interstellar ultraviolet radiation to allow H atoms to bind together to form molecular hydrogen (H2). They are therefore called molecular clouds. H2 is a homonuclear molecule. Its dipole moment vanishes and it radiates extremely weakly under normal Galactic ISM conditions. Direct detection of H2 is therefore generally possible only through ultraviolet absorption studies. Due to atmospheric opacity these studies can only be done from space, and are limited to pencil-beam measurements of the absorption of light from bright stars or active galactic nuclei (AGN). We note that rotational and ro- vibrational emission lines from H2 have indeed been detected in the infrared, both in the Milky Way and in other galaxies. However, this emission comes from gas that has been strongly heated by shocks or radiation, and it traces only a small fraction of the overall amount of molecular hydrogen. Due to these limitations, the most common tool for studying the molecular ISM is radio and sub-millimeter emission either from dust grains or from other molecules that tend to be found in the same locations as H2. By far the most commonly used molecular tracer is carbon monoxide with its various isotopologues. The most abundant, and hence easiest to observe is 12C16O, usually referred to simply as 12CO or just CO. However, this isotopologue is often so abundant that its emission is optically thick, meaning that it only traces conditions reliably in the surface layers of the dense substructure found within most molecular clouds. The next most abundant isotopologues are 13C16O (usually written simply as 13CO) and 12C18O (usually just C18O). Their emission is often optically thin and can freely escape the system. This allows us to trace the full volume of the cloud. As CO has a relatively low critical density and also freezes out on dust grains at very high densities, other + tracers such as HCN or N2H need to be used to study conditions within 6 Introduction high density regions such as prestellar cores. We discuss the microphysics of the interaction between radiation and matter and the various heating and cooling processes that determine the thermodynamic response of the various phases of the ISM in Section 3. A key physical agent controlling the dynamical evolution of the ISM is turbulence. For a long time it was thought that supersonic turbulence in the interstellar gas could not produce significant compressions, since this would result in a rapid dissipation of the turbulent kinetic energy. In order to avoid this rapid dissipation of energy, appeal was made to the presence of strong magnetic fields in the clouds, which were thought to greatly reduce the dissipation rate.
Recommended publications
  • 145, September 2010
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 145, September 2010 Contents EG Andromedae Light Curve ................................................... inside front cover From the Director ............................................................................................... 1 Letter Page. Visual Observing ............................................................................ 4 Epsilon Aurigae Spectroscopically at Mid Eclipse .......................................... 5 Eclipsing Binary News ...................................................................................... 7 AO Cassiopeiae Phase Diagram ............................................................ 9 PV Cephei and Gyulbudaghian’s Nebula ........................................................ 10 WR140 Periastron Campaign Update .............................................................. 12 VSS Meeting, Pendrell Hall. The Central Stars of Planetary Nebulae ............ 14 RR Coronae Borealis 1993-2004 ...................................................................... 16 TU Cassiopeiae Phase Diagram 2005-2010 ..................................................... 18 Binocular Priority List ..................................................................................... 19 Eclipsing Binary Predictions ............................................................................ 20 Charges for Section Publications .............................................. inside back cover Guidelines for Contributing to the Circular .............................
    [Show full text]
  • Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
    Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • Alyssa Goodman, Naomi Ridge, Scott Wolk, Scott Schnee, Di Li & Bryan
    COMPLET(E)ING THE STAR-FORMATION HISTORY OF THE RHO-OPH REGION Alyssa Goodman, Naomi Ridge, Scott Wolk, Scott Schnee, Di Li & Bryan Gaensler Background The interaction of newly formed stars with their parent cloud, particularly in the case of massive stars, can have significant consequences for the subsequent development of the cloud. Hot, massive stars will cause cloud disruption through their ionizing flux as well as through the momentum in their stellar winds. Alternatively, given the right conditions in the cloud, stellar winds may also cause the collapse of cloud cores and induce further star formation. Located only 160pc from the Sun, the Ophiuchus molecular cloud is one of the most conspicuous nearby regions where low- and intermediate-mass star formation is taking place (e.g. Wilking 1992 for a review). The Ophiuchus cloud consists of two massive, centrally condensed cores, L1688 and L1689, from each of which a filamentary system of streamers extends to the north-east over tens of parsecs (e.g. Loren 1989). While little star formation activity is observed in the streamers, the westernmost core, L1688 (figure 1), harbors a rich cluster of young stellar objects (YSOs) at various evolutionary stages and is distinguished by a high star-formation efficiency (Wilking & Lada 1983 - hereafter WL83). This young stellar cluster and the cloud core in which it resides are commonly referred to as the ρ-Oph star-forming region. Both the gas/dust content and the embedded stellar population of ρ−Oph have been extensively studied for more than two decades. The distribution of the low-density molecular gas was mapped in C18O(1-0) by WL83, revealing a ridge of high column density gas.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2017
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2017 Tatranská Lomnica január 2018 Obsah osnovy Správy o činnosti organizácie SAV za rok 2017 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2017 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica http://www.ta3.sk Tel.: 052/7879111 Fax: 052/4467656 E-mail: [email protected] Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • Successful Observing Sessions HOWL-EEN FUN Kepler’S Supernova Remnant Harvard’S Plate Project and Women Computers
    Published by the Astronomical League Vol. 69, No. 4 September 2017 Successful Observing Sessions HOWL-EEN FUN Kepler’s Supernova Remnant Harvard’s Plate Project and Women Computers T HE ASTRONOMICAL LEAGUE 1 he 1,396th entry in John the way to HR 8281, is the Dreyer’s Index Catalogue of Elephant’s Trunk Nebula. The T Nebulae and Clusters of left (east) edge of the trunk Stars is associated with a DEEP-SKY OBJECTS contains bright, hot, young galactic star cluster contained stars, emission nebulae, within a large region of faint reflection nebulae, and dark nebulosity, and a smaller region THE ELEPHANT’S TRUNK NEBULA nebulae worth exploring with an within it called the Elephant’s 8-inch or larger telescope. Trunk Nebula. In general, this By Dr. James R. Dire, Kauai Educational Association for Science & Astronomy Other features that are an entire region is absolute must to referred to by the check out in IC pachyderm 1396 are the proboscis phrase. many dark IC 1396 resides nebulae. Probably in the constellation the best is Cepheus and is Barnard 161. This located 2,400 light- dark nebula is years from Earth. located 15 To find IC 1396, arcminutes north start at Alpha of SAO 33652. Cephei, a.k.a. The nebula Alderamin, and go measures 5 by 2.5 five degrees arcminutes in southeast to the size. The nebula is fourth-magnitude very dark. Myriad red star Mu Cephei. Milky Way stars Mu Cephei goes by surround the the Arabic name nebula, but none Erakis. It is also can be seen in called Herschel’s this small patch of Garnet Star, after the sky.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • Lifetimes of Interstellar Dust from Cosmic Ray Exposure Ages of Presolar Silicon Carbide
    Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide Philipp R. Hecka,b,c,1, Jennika Greera,b,c, Levke Kööpa,b,c, Reto Trappitschd, Frank Gyngarde,f, Henner Busemanng, Colin Madeng, Janaína N. Ávilah, Andrew M. Davisa,b,c,i, and Rainer Wielerg aRobert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, IL 60605; bChicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637; cDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; ePhysics Department, Washington University, St. Louis, MO 63130; fCenter for NanoImaging, Harvard Medical School, Cambridge, MA 02139; gInstitute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland; hResearch School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; and iEnrico Fermi Institute, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved December 17, 2019 (received for review March 15, 2019) We determined interstellar cosmic ray exposure ages of 40 large ago. These grains are identified as presolar by their large isotopic presolar silicon carbide grains extracted from the Murchison CM2 anomalies that exclude an origin in the Solar System (13, 14). meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± Presolar stardust grains are the oldest known solid samples 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga available for study in the laboratory, represent the small fraction ago.
    [Show full text]
  • Chemical Survey Toward Young Stellar Objects in the Perseus Molecular Cloud Complex
    The Astrophysical Journal Supplement Series, 236:52 (25pp), 2018 June https://doi.org/10.3847/1538-4365/aabfe9 © 2018. The American Astronomical Society. Chemical Survey toward Young Stellar Objects in the Perseus Molecular Cloud Complex Aya E. Higuchi1 , Nami Sakai1 , Yoshimasa Watanabe2 , Ana López-Sepulcre3,4, Kento Yoshida1,5, Yoko Oya5 , Muneaki Imai5 , Yichen Zhang1 , Cecilia Ceccarelli3 , Bertrand Lefloch3, Claudio Codella6 , Rafael Bachiller7 , Tomoya Hirota8 , Takeshi Sakai9 , and Satoshi Yamamoto5 1 RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; [email protected] 2 Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan 3 Univ. Grenoble Alpes, CNRS, Institut de Plan étologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France 4 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire de Grenoble, F-38406 Saint-Martin d’H ères, France 5 Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 6 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy 7 IGN Observatorio Astronómico Nacional, Apartado 1143, E-28800 Alcalá de Henares, Spain 8 National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan 9 Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan Received 2017 December 1; revised 2018 April 20; accepted 2018 April 21; published 2018 June 20 Abstract The chemical diversity of gas in low-mass protostellar cores is widely recognized. In order to explore the origin of this diversity, a survey of chemical composition toward 36 Class 0/I protostars in the Perseus molecular cloud complex, which are selected in an unbiased way under certain physical conditions, has been conducted with IRAM30mandNRO45m telescope.
    [Show full text]
  • 物理雙月刊29-3 621-772.Pdf
    ᒳृݧ ʳ ౨ᄭઝݾറᙀ ᚮࣔᏕ/֮ Δࢨუ෡Եᛵᇞݺଚشଶಬߨጿጿլឰऱਞ ၦऱࠌ ౨ᄭऱ࿨࣠Δኙ٤෺شॸΔ᠏ณհၴԾࠩԱքΕԮִ መ৫ࠌ ഏᎾၴऱڇऱᐙ᥼ګԳพஒऱ ᛩቼࢬທח᥆࣍ङ୙ऱֲ՗Δ עء۶Δլ݋ោᥦԫՀڕټ᦭ᚰۖࠐΖ ඈچᑷ௡ԫंंլឰ ᨜Δᑷ௡ รԼᒧറ֮ΚψൕഏᎾᛩቼਐᑇ؀؄ࡌ੡௧੉ᛩ៥ऱ ᨜ऱ࿇ሽ౨ᄭ؀ऱᛘ௛Δ ֗ IEA อૠ઎װ൅ထԫैཀհլ݈ ωΔᇠᒧ֮ີტ᝔խᘋՕᖂ܉᨜ऱՕ௛հխΔᨃԳ ։؀ᗺ៥࣍ ᤚ൓ຑ़௛Εຑ௧੉ຟ૞आᤴ ढ෻ߓ୪ւࣳඒ඄࣍ඒᖂઔߒ խࢼ़੡ݺଚᐷᐊΖڦۍऱ ؀Ꭹ୙հᎾΔڼԱΖՈࠌ൓ଖ ᆖᛎࡉഏԺऱ࿇୶זᆏᆏՂ ෼چሽլឰش୽ڞ᨜ऱ ᎅ࠷ެ࣍౨ᄭױሽ ፖ๵ᑓΔ༓׏شڇΔኚ໌೏୽ΖྥۖΔ֒ Δޡݾ๬ऱၞشࠡሎ֗شழΔݺଚՈ੡Օ௛ ऱࠌٵ೏୽ཚऱ ᎅਢԫഏᆖᛎ࿇୶ऱ଺ױCO2 ऱඈ࣋ၦࡉ׈੺ᄵ৛யᚨ ౨ᄭ ٺΔ౨ᄭᤜᠲኙ࣍ڼڂऱ༞֏ΔထኔఎՀԱլ֟լߜ ೯ԺΖ ࡳࢤެڶᏆ഑ऱ࿇୶ࠠٺڇ෺ᄊ֏ ഏچຒףԱګऱધᙕΔՈ ߪᣂএࠩԫ౳षᄎՕฒऱ壂ઘࡉֲൄढ֊ޓயᚨऱ׌૞ං֫հԫΖ ऱᐙ᥼Δ ฒاڇवኙ࣍ Ꮭऱं೯ΖᅝഏᎾईᏝՂཆΔഏփढᏝঁஓஓױݺଚ੡ࠆ࠹ԫաऱ堚ළፖঁ൸հᎾΔڇ ՂይΖچ᨜Δ ऱ঩ৼᜢխᆥྤݲᐫ؀ᇷᄭᤖ៲ຆ׎Δ౨ᄭ༓׏٤ᑇٛᘸၞՑऱྥ֚ 9 ڣ ࣍ 2005ޓࠐΔ׈੺ईᏝᆏᆏ֒೏Δڣၦথբ २༓شࢬ௣౛ऱؓ݁ሽၦࡉ౨ᄭࠌڣޢԳޢݺଚ ද೏࣍ US$70 ऱ໌ޢࠐऱᖵ׾ᄅ೏Δሒڣۍሽ ִٝડధڇ౨ᄭΕڇ᨜؀׈੺ऱছૄΜૉ൞უ઎઎ڇټਢඈ ᄭ۞ᖏञࡉైڂຝ։ڶᄅ೏ધᙕΖ׈੺ईᏝऱं೯ឈ ᚮࣔᏕ ౨ᄭف෺Ղ֏چլ؆׏ਢڂ׼ԫ׌૞଺܀ਙएࠃٙΔ 堚ဎՕᖂढ෻ߓمഏ ڶईΕ֚ྥ௛ࡉᅁ࿛౨ᄭᗏற)ऱᤖ៲ၦึߒفऑਐ) E-mail: [email protected] ฾ࢤΔ׊ૉشऱ౨ᄭࠌڶૻΖറ୮ေ۷ૉ௅ᖕԳᣊ෼ Ϯ621Ϯʳ քִʳڣ ˊ˃˃˅ʻ֥԰࠴Կཚʼʳעढ෻ᠨִ ᒳृݧ ༚ྼऱ᝟ႨΖᅝᓫᓵᇠ֘ுΛࢨਢᇠᖑுΛംᠲڶۖ ࠩބயऱᆏ౨ֱூΔࢨլᕣݶ༈ڶإటנ༼౨آᙈᙈ ෻ᇞு౨ᗏறऱ፹ທመچհছΔषᄎՕฒᚨᇠ٣堚ᄑ ڶ෺Ղೈᅁᇷᄭࡸچ౨ᄭऱᇩΔঞזࠠ೏ய෷հཙ ਩؆ਜ਼ழऱۆுᘿ୴֗א଺෻Δ܂࿓ࡉு౨࿇ሽऱՠ فईࡉ֚ྥ௛࿛֏فڕהऱᤖ៲ၦ؆Δࠡ׳ؐڣ 200 ෻ࢤড়ᨠऱኪ৫੡אթ౨ڼڕୌࠄΔڶՂऱ׈੺ ߻ᥨൻਜࠩࢍאڣ ౨ྤऄ֭ᐶመ 50ױၦቃ۷ژᗏறऱᚏ ཚ௽ءΔڼڂᖗΖހᒔऱإԫנு౨࿇ሽ೚شࠌܡၦΖ ਢޣ౨ᄭ᜔Ꮑ ሽֆ׹ுԿᐗૠቤิ९೏ದ໑Փऱᑷ֧֨؀ᗏ ܑຘመف׊᠏ངய෷ለ೏հႚอ֏܅ءګΔᆖᛎۖྥ ሽֆ׹ு౨࿇ሽ؀ኔ೭ᆖ᧭ऱڣڍڶࠩԱٍࠠބऱሽ౨ ៺Δشऴ൷ࠌאԫ౳Օฒ൓ګ᠏ངڇΔشறऱࠌ ،੡ݺଚ੡֮റ૪ψࢢسࢨᑷ౨ऱመ࿓խΔᄎ ๠ு֨ᛜሎᓰᓰ९׆ᐚᆠ٣(شԺ࿇ሽ)Ε೯౨(ሎᙁ־อጠ) ॺൄ෍᧩࣐ᚩऱאԱᇞ،--ு౨࿇ሽ෍ᓫωΔᇠ֮ڕլ ۆᎨॸΔᖄીᣤૹऱᛩቼګඈ࣋Օၦऱᄵ৛௛᧯ࡉݮ ຝ๠෻ٺᎅࣔԱு౨࿇ሽऱچ੡ᦰृ堚ᄑڗ෺ऱؓ݁ᄵ৫ 壄᥸֮چ਩ࡉֲ᝟ᣤૹऱᄵ৛யᚨΔၞۖᖄી ኪؓᘝ ੌ࿓ࡉுᗏறՄऱ፹ທመ࿓Δਢԫᒧॺൄଖ൓ԫᦰऱسऱڶ෺ऱ۞ྥᛩቼࡉ଺چኙۖڂດዬՂ֒Ζ ኪᛩቼ૿ ֮ີΖس෺ऱچऱᣤૹᓢᚰΔࠌڃனױլګؘലທ ٤ᤜᠲǵഏᎾ଺ईᏝ௑ࡺ೏լڜईفᜯ؎ՕऱਗᖏΖ ࠹ࠩ٤෺ ՂഏᎾၴ๵ᒤᄵ৛௛᧯ඈ࣋྇ၦࢭᘭհᛩঅֆףࡉ௛ଢऱ᧢ᔢࢬທ ՀΔ᧢ޏኙᛩቼऱشᣂ౨ᄭሎڶ ڂᛩঅრᢝ೏ይ࿛֗אඔ೯Δڤإऱᐙ᥼ຍଡૹ૞ᤜᠲΔݺଚ௽ܑࡡᓮՠᄐݾ๬ઔߒ પψࠇຟᤜࡳ஼ωګ ੡ԳᣊؘߨհሁΖ۶ᘯګ౨ᄭسᡖᐚ ైऱᓢᚰՀΔං೯٦ۂ(Հ១ጠՠઔೃ౨ᛩࢬא)ೃ౨ᄭፖᛩቼઔߒࢬ ౨ᄭ࿇ሽωٍ௽ᆖسรքᒧറ֮ψ٦עء౨ᄭΛس٦
    [Show full text]
  • Hollenbach D CV2008.Pdf
    SUMMARY CURRICULUM VITA DAVID JOHN HOLLENBACH Education: PhD., Theoretical Physics, Cornell University, 1969 Present Area of Research: Theoretical astrophysics, infrared astronomy, interstellar medium, star formation, astrochemistry, astrobiology Professional Activities: Senior member of American Astronomical Society, Senior member of International Astronomical Union, Study Scientist Large Deployable Telescope (LDR) Project (1980-84), Member of NASA Astronomy and Relativity Management Operation Working Group (ARMOWG) (1985-88), Scientific Organizing Committee for IAU Symposium 120, “Astrochemistry” (1984-85), Scientific Organizing Committee for Summer Schools on "Interstellar Processes”, The Interstellar Medium of Galaxies", and "The Evolution of Galaxies and Their Environment" (1985-1992), Director (PI) of the Center for Star Formation Studies, a consortium of NASA-Ames, UC Berkeley, and UC Santa Cruz Theoretical Astrophysicists funded by the NASA Theory Program (1985-2002), Member of the Executive Committee for the Space Sciences Laboratory, UC Berkeley (1985-1995), Co-Investigator on the Submillimeter Wave Astronomical Satellite (SWAS)(1988-present), Member of the Infrared Panel of the National Academy of Sciences Astronomy Astrophysics Survey Committee(1988-1990), Member of the ISO Short Wavelength Spectrometer Team (1990-2000), Member of the Stratospheric Observatory for Infrared Astronomy (SOFIA) Science Working Group (1990-1995), Member of the Submillimeter Science Working Group (1985-1995), Member of Executive Council of the American
    [Show full text]
  • Nebula in NGC 2264
    Durham E-Theses The polarisation of the cone(IRN) Nebula in NGC 2264 Hill, Marianne C.M. How to cite: Hill, Marianne C.M. (1991) The polarisation of the cone(IRN) Nebula in NGC 2264, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6098/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk THE POLARISATION OF THE CONE(IRN) NEBULA IN NGC 2264 MARIANNE C. M. HILL A Thesis submitted to the University of Durham for the degree of Master of Science. The copyright of this thesis rests with the author. No quotation from it should be published without prior consent and information derived from it should be acknowledged. Department of Physics. September 1991 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
    [Show full text]