Class II. Betaproteobacteria Class. Nov. GEORGE M

Total Page:16

File Type:pdf, Size:1020Kb

Class II. Betaproteobacteria Class. Nov. GEORGE M CLASS II. BETAPROTEOBACTERIA 575 Class II. Betaproteobacteria class. nov. GEORGE M. GARRITY, JULIA A. BELL AND TIMOTHY LILBURN Be.ta.pro.te.o.bac.teЈri.a. Gr. n. beta name of second letter of Greek alphabet; Gr. n. Proteus ocean god able to change shape; Gr. n. bakterion a small rod; M.L. fem. pl. n. Betaproteobacteria class of bacteria having 16S rRNA gene sequences related to those of the members of the order Spirillales. The class Betaproteobacteria was circumscribed for this volume on ylophilales, Neisseriales, Nitrosomonadales, “Procabacteriales”, and Rho- the basis of phylogenetic analysis of 16S rRNA sequences; the docyclales. class contains the orders Burkholderiales, Hydrogenophilales, Meth- Type order: Burkholderiales ord. nov. Order I. Burkholderiales ord. nov. GEORGE M. GARRITY, JULIA A. BELL AND TIMOTHY LILBURN Burk.hol.de.ri.aЈles. M.L. fem. n. Burkholderia type genus of the order; -ales ending to denote order; M.L. fem. n. Burkholderiales the Burkholderia order. The order Burkholderiales was circumscribed for this volume on trogen-fixing organisms; and plant, animal, and human patho- the basis of phylogenetic analysis of 16S rRNA sequences; the gens. order contains the families Burkholderiaceae, Oxalobacteraceae, Al- Type genus: Burkholderia Yabuuchi, Kosako, Oyaizu, Yano, caligenaceae, and Comamonadaceae. Hotta, Hashimoto, Ezaki and Arakawa 1993, 398 (Effective pub- Order is phenotypically, metabolically, and ecologically di- lication: Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Hashimoto, verse. Includes strictly aerobic and facultatively anaerobic che- Ezaki and Arakawa 1992, 1268) emend. Gillis, Van, Bardin, Goor, moorganotrophs; obligate and facultative chemolithotrophs; ni- Hebbar, Willems, Segers, Kersters, Heulin and Fernandez 1995, 286. Family I. Burkholderiaceae fam. nov. GEORGE M. GARRITY, JULIA A. BELL AND TIMOTHY LILBURN Burk.hol.de.ri.aЈce.ae. M.L. fem. n. Burkholderia type genus of the family; -aceae ending to denote family; M.L. fem. pl. n. Burkholderiaceae the Burkholderia family. The family Burkholderiaceae was circumscribed for this volume on chemoorganotrophs and obligate and facultative chemolitho- the basis of phylogenetic analysis of 16S rRNA sequences; the trophs. family contains the genera Burkholderia (type genus), Cupriavidus, Type genus: Burkholderia Yabuuchi, Kosako, Oyaizu, Yano, Lautropia, Limnobacter, Pandoraea, Paucimonas, Polynucleobacter,Ral- Hotta, Hashimoto, Ezaki and Arakawa 1993, 398 (Effective pub- stonia, and Thermothrix. Limnobacter was proposed after the cut- lication: Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Hashimoto, off date for inclusion in this volume ( June 30, 2001) and is not Ezaki and Arakawa 1992, 1268) emend. Gillis, Van, Bardin, Goor, described here (see Spring et al. (2001). Hebbar, Willems, Segers, Kersters, Heulin and Fernandez 1995, Family is phenotypically, metabolically, and ecologically di- 286. verse. Includes both strictly aerobic and facultatively anaerobic Genus I. Burkholderia Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Hashimoto, Ezaki and Arakawa 1993, 398VP (Effective publication: Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Hashimoto, Ezaki and Arakawa 1992, 1268) emend. Gillis, Van, Bardin, Goor, Hebbar, Willems, Segers, Kersters, Heulin and Fernandez 1995, 286* NORBERTO J. PALLERONI Burk.hol.deЈri.a. M.L. fem. n. Burkholderia named after W.H. Burkholder, American bacteriologist who discovered the etiological agent of onion rot. Cells single or in pairs, straight or curved rods, but not helical. lm. Motile by means of 4–1.5 ן Dimensions, generally 0.5–1 *Editorial Note: The literature search for the chapter on Burkholderia was completed one or, more commonly, several polar flagella. One species (Burk- in January, 2000. During the course of unavoidable publication delays, a number of new species were described or reclassified after the chapter was completed. It holderia mallei) lacks flagella and is nonmotile. Do not produce was not possible to include these species in the text or to include their characteristics sheaths or prosthecae. No resting stages are known. Gram neg- in the comparative tables. The reader is encouraged to consult the studies listed ative. Most species accumulate poly-b-hydroxybutyrate (PHB) as in the Further Reading section. 576 FAMILY I. BURKHOLDERIACEAE carbon reserve material. Chemoorganotrophs. Have a strictly res- rRNA similarity group II of Palleroni et al. (1973), which includes piratory type of metabolism with oxygen as the terminal electron the genus Burkholderia, have a fatty acid composition containing acceptor. Some species can exhibit anaerobic respiration with C14:0 3OH and C16:0, and C18:1 2OH. Most strains also contained nitrate. Strains of some of the species (B. cepacia, B. vietnamiensis) C16:0 2OH and C16:1. Even though hydroxylated fatty acids are pres- are able to fix N2. Catalase positive. A wide variety of organic ent in the lipids of members of other groups, group II including compounds can be used as sources of carbon and energy for Burkholderia is the only one having hydroxylated fatty acids of 14, growth. Although hydroxylated fatty acids are present in the lip- 16, and 18 carbon atoms (Table BXII.b.1). A recent evaluation ids of members of other genera of aerobic pseudomonads, spe- of the taxonomic significance of fatty acid composition empha- cies of Burkholderia are characterized by the presence of hydroxy sizes the diagnostic value of the above results (Vancanneyt et al., fatty acids of 14, 16, and 18 carbon atoms (C14:0 3OH and C16:0, 1996), confirming earlier findings on this approach for the char- and C16:0 2OH, C16:1, and C18:1). The most characteristic of these acterization of major phylogenetic groups within the pseudo- acids is the C16:0 3OH. Two different ornithine lipids are present monads (Wollenweber and Rietschel, 1990). in strains of some of the species. Over one-half of the species Ornithine-containing lipids in Pseudomonas aeruginosa, P. pu- are pathogenic for plants or animals (including humans). The tida, and B. cepacia represent from 2–15% of the total of extract- genus belongs to the ribosomal RNA similarity group II, which able lipids. The amino acid was not found in the phospholipids can be differentiated from other groups of aerobic pseudomo- that amount to more than 80% of all the extractable lipids (Kawai nads by rRNA/DNA hybridization experiments or by rDNA se- et al., 1988). An analysis of the polar lipids and fatty acids of B. quencing. cepacia has shown that the only significant phospholipids in this -(C of the DNA is: 59–69.6. species are phosphatidyl-ethanolamine and bis(phosphatidyl ם The mol% G Type species: Burkholderia cepacia (Palleroni and Holmes glycerol. These characteristics, taken together with the unusual 1981) Yabuuchi, Kosako, Oyaizu, Yano, Hotta, Hashimoto, Ezaki lipid profiles of B. cepacia, can be used as markers of chemotax- and Arakawa 1993, 398 (Effective publication: Yabuuchi, Kosako, onomic importance (Cox and Wilkinson, 1989a). Oyaizu, Yano, Hotta, Hashimoto, Ezaki and Arakawa 1992, 1271) A striking feature of the cellular composition of B. cepacia is (Pseudomonas cepacia Palleroni and Holmes 1981, 479.) the range of polar lipids, which include two forms (with and without 2-OH fatty acids) of phosphatidyl-ethanolamine and or- FURTHER DESCRIPTIVE INFORMATION nithine amide lipids. Variations in the lipid composition, as well Cell morphology The cells of the genus Burkholderia corre- as in pigmentation and flagellation, were observed as the con- spond in their general characteristics to those of other aerobic sequence of changes in growth temperature and limiting oxygen, pseudomonads: Gram-negative rods, straight or slightly curved, carbon, phosphorus, and magnesium supplies in the medium. with rounded ends, usually motile when suspended in liquid. Phosphorus limitation appears to be the only nutritional factor Motility is due to several polar flagella, but a single flagellum that results in a composition with polar lipids represented only per cell has been reported for B. andropogonis, B. glathei, and B. by ornithine amide lipids (Taylor et al., 1998). norimbergensis.* The single flagellum of B. andropogonis is sheathed Interestingly, the 3-hydroxylated fatty acid of 10 carbon atoms (Fuerst and Hayward, 1969a). One species, B. mallei, is nonmotile is a component of the lipids of B. gladioli but not of those of B. and lacks flagella (Redfearn et al., 1966). cepacia, as indicated by lipid analysis performed on B. gladioli strains isolated from respiratory tract infections in cystic fibrosis Intracellular granules The cells of species of the genus ac- patients (Christenson et al., 1989). cumulate granules of carbon reserve material (poly-b-hydroxy- Differentiation of the plant pathogenic species of Burkholderia b butyrate, PHB, which may be part of a copolymer with poly- - can be done by a direct colony thin-layer chromatographic hydroxyvalerate, PHA). Proteins (“phasins”) have been found to be associated with the granules (Wieczorek et al., 1996). Only B. pseudomallei and some strains of B. mallei use extracellular PHB for growth (Ramsay et al., 1990). All species able to accumulate TABLE BXII.b.1. Fatty acid and ubiquinone composition of the genus PHB can use the intracellular polymer when needed; however, Burkholderia (rRNA group II) and of aerobic pseudomonads of other a,b in the description of some species, the statement “can use PHB” rRNA groups has been included, without indicating whether the PHB was Ribosomal RNA groups endo- or extracellular. Fatty acids I II III IV V The colonies of most species of the genus are smooth, but 3-OH ם ם ם those of the human pathogen B. pseudomallei often have a rough C10:0 ם surface. C11:0 ם C11:0 iso ם ם ם Lipids The first detailed analysis of the fatty acids of aerobic C12:0 ם pseudomonads, using both saprophytic and phytopathogenic C12:0 iso ם strains, demonstrated the possibility of establishing a correlation C13:0 iso ם ם with the phylogenetic subdivision of the genus Pseudomonas, as C14:0 ם C16:1 classically defined, on the basis of rRNA–DNA hybridization 2-OH (ם) Oyaizu and Komagata, 1983). Years later, the results of this sur- C12:0) (ם) vey were confirmed and extended (Stead, 1992).
Recommended publications
  • USDA/APHIS Environmental Assessment
    Finding of No Significant Impact and Decision Notice Animal and Plant Health Inspection Service Issuance of Permit to Release Genetically-Engineered Burkholderia glumae The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) has received a permit application (APHIS number 06-111-01r) from Dr. Martin Rush at the Louisiana State University to conduct a field trial using strains of the bacterium Burkholderia glumae. Permit application 06-111-01r describes four Burkholderia glumae strains: Two wild-type strains endemic to the United States, one of which causes panicle blight on rice and the other naturally non-pathogenic, and two genetically engineered, non-pathogenic strains that share the same avirulent phenotype. A description of the field tests may be found in the attached Environmental Assessment (EA), which was prepared pursuant to APHIS regulations (7 CFR part 372) promulgated under the National Environmental Policy Act. The field tests are scheduled to begin in August 2007 in East Baton Rouge Parish, Louisiana. An EA was prepared and submitted for public comment for 30 days. One comment that raised 5 issues was received and the issues are addressed in an attachment to this document. APHIS proposed three different actions to take in response to the permit application: • the denial of the permit (Alternative A) • the granting of the permit with no Supplemental Permit Conditions (Alternative B) • the granting of the permit with Supplemental Permit Conditions containing duplicative safety measures and reporting requirements (Alternative C) APHIS chose Alternative C as its Preferred Alternative. Based upon analysis described in the EA, APHIS has determined that the action proposed in Alternative C will not have a significant impact on the quality of the human environment because: 1.
    [Show full text]
  • Crystal Structures of the Burkholderia Multivorans Hopanoid Transporter Hpnn
    Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN Nitin Kumara,1, Chih-Chia Sub,1, Tsung-Han Choub, Abhijith Radhakrishnana, Jared A. Delmarb, Kanagalaghatta R. Rajashankarc,d, and Edward W. Yua,b,2 aDepartment of Chemistry, Iowa State University, Ames, IA 50011; bDepartment of Physics and Astronomy, Iowa State University, IA 50011; cNortheastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL 60439; and dDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 Edited by Eric Gouaux, Oregon Health and Science University, Portland, OR, and approved May 15, 2017 (received for review November 30, 2016) Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative critical line of defense against antimicrobial agents in Burkholderia opportunisitic bacteria that are capable of causing serious diseases, species is the permeability barrier of the outer membrane. Most of mainly in immunocompromised individuals. Bcc pathogens are in- these species contain a modified lipopolysaccharide, which results in trinsically resistant to multiple antibiotics, including β-lactams, ami- polymyxin resistance (13). In addition, the permeability of the major noglycosides, fluoroquinolones, and polymyxins. They are major outer membrane porin channel Omp38 appears to be low for an- pathogens in patients with cystic fibrosis (CF) and can cause severe tibiotics (14). The presence of a large number of multidrug efflux necrotizing pneumonia, which is often fatal. Hopanoid biosynthesis pumps, belonging to the resistance-nodulation-cell division (RND) is one of the major mechanisms involved in multiple antimicrobial superfamily, also plays a major role in the intrinsic resistance to a resistance of Bcc pathogens. The hpnN gene of B.
    [Show full text]
  • Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp.
    [Show full text]
  • Dehydrated Culture Media
    Dehydrated Culture Media Manufactured by Dehydrated Culture Media Table of Contents 4 CRITERION™ Products 12 Supplements and Antibiotics 13 CRITERION™ Agarose for Gel Electrophoresis Dehydrated Culture Media ™ TM Hardy Diagnostics’ dehydrated culture media, CRITERION , is formulated to meet or exceed the highest quality standards. DEHYDRATED CULTURE MEDIA Choose from 250 standard formulas or request custom blending to your specifications. The innovative packaging designs and overall reliability makeCRITERION ™ the logical choice for culture media in your laboratory. FEATURES & BENEFITS Hand Grip Convenient hand-grip design features finger indentations to allow for easy and safe handling of the bottle. Induction Seal Gray Jar Pull-off induction seal prevents moisture from clumping the media, keeping it fresh and dry. Opaque gray jar diminishes Wide Mouth Opening light penetration, • Allows for easy access to use a scoop when prolonging superior measuring the powder. performance and • Prevents inhalation hazards and reduces shelf life. hazardous dust formations. • No more shaking the bottle to dispense the media. Desiccant Pack A silica gel pack is included in each bottle to prevent clumping. Reusable Seal A built-in cushion seal inside the lid prevents moisture from entering the previously opened container. 1 UNPARALLELED PERFORMANCE Every formulation and lot is thoroughly tested for optimal growth characteristics. WIDE MOUTH OPENING Scooping media from the wide mouth bottle, instead of pouring and shaking, reduces dangerous dust formation CONVENIENT SIZES Packaged in four standard sizes to fit your needs: • 2 liter Mylar® bag (pre-measured to make 2 liters of culture media) • 500gm bottle • 2kg buckets with locking screw top lid • 10kg buckets with locking screw top lid STACKABLE Bottles and buckets have a nesting design and are stackable for efficient and economical storage.
    [Show full text]
  • Product Information Sheet for NR-705
    Product Information Sheet for NR-705 Burkholderia multivorans, Strain LMG stored at -60°C or colder immediately upon arrival. For ® long-term storage, the vapor phase of a liquid nitrogen 13010 (ATCC BAA-247) freezer is recommended. Freeze-thaw cycles should be avoided. Catalog No. NR-705 (Derived from ATCC® BAA-247) Growth Conditions: Media: Tryptic Soy broth or equivalent For research only. Not for human use. Tryptic Soy agar or equivalent Incubation: Contributor: ® Temperature: 30°C ATCC Atmosphere: Aerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use; then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Burkholderiaceae, Burkholderia agar slant and/or plate. Species: Burkholderia multivorans (formerly Burkholderia 4. Incubate the tube, slant and/or plate for 24 to 48 hours. cepacia genomovar II)1 ® Strain: Type strain, LMG 13010 (ATCC BAA-247, CCUG Citation: 34080, Lauwers Cepa 002, CIP 105495, DSM 13243, Acknowledgment for publications should read “The following NCTC 13007) reagent was obtained through BEI Resources, NIAID, NIH: Original Source: Burkholderia multivorans (B. multivorans), Burkholderia multivorans, Strain LMG 13010 (ATCC® BAA- strain LMG 13010 was isolated in 1992 from the sputum of 1 247), NR-705.” a cystic fibrosis patient in Belgium. Comments: B. multivorans, strain LMG 13010 was deposited ® Biosafety Level: 2 at the ATCC in 2001 by Dr. D. Janssens from Appropriate safety procedures should always be used with BCCM/LMG Bacteria Collection, Ghent University, Ghent, this material. Laboratory safety is discussed in the following Belgium.
    [Show full text]
  • Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
    fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their
    [Show full text]
  • Biocontrol of Sclerotinia Stem Rot of Canola by Bacterial Antagonists and Study of Biocontrol Mechanisms Involved
    BIOCONTROL OF SCLEROTINIA STEM ROT OF CANOLA BY BACTERIAL ANTAGONISTS AND STUDY OF BIOCONTROL MECHANISMS INVOLVED by Yilan Zhang A Thesis Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada © Yilan Zhang 2004 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION PAGE Biocontrol of Sclerotinia Stem Rot of Canola by Bacterial Antagonists and Study of Biocontrol Mechanisms Involved By Yilan Zhang A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of Master of Science Yilan Zhang © 2004 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of the this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to the Univesity Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author’s written permission. ACKNOWLEGEMENTS Fist of all, I would like to express my appreciation to my supervisor Dr. Dilantha Fernando for his guidance in my experiments, and support given at conference presentations and applying for several travel awards. Only with your patience, kindness and encouragement I could grow as a student and plant pathologist. I also appreciate the help of my co-supervisor Dr. Fouad Daayf, for the advice and support for my project during my Masters program.
    [Show full text]
  • Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating Β‑Proteobacterium Pandoraea Sp
    Kumar et al. Biotechnol Biofuels (2018) 11:154 https://doi.org/10.1186/s13068-018-1148-2 Biotechnology for Biofuels RESEARCH Open Access Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β‑proteobacterium Pandoraea sp. ISTKB Madan Kumar1, Sandhya Verma2, Rajesh Kumar Gazara2, Manish Kumar1, Ashok Pandey3, Praveen Kumar Verma2* and Indu Shekhar Thakur1* Abstract Background: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysac- charide-based biorefnery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to fnd the impor- tant enzymes for polymer utilization. Results: Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identifed various candidate genes responsible for lignin degradation and PHA production.
    [Show full text]
  • Burkholderia Pyrrocinia JK-SH007 Enhanced Seed Germination, Cucumber Seedling Growth and Tomato Fruit Via Catecholate- Siderophore-Mediation
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19F–065/2019/22–4–779–786 DOI: 10.17957/IJAB/15.1130 http://www.fspublishers.org Full Length Article Burkholderia pyrrocinia JK-SH007 Enhanced Seed Germination, Cucumber Seedling Growth and Tomato Fruit via Catecholate- Siderophore-Mediation Li-Jing Min1,2, Xiao-Qin Wu1, De-Wei Li1,3, Ke Chen4, Lu Guo5 and Jian-Ren Ye1* 1Southern China Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China 2College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China 3The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA 4Huzhou Institute for Food and Drug Control, Huzhou, Zhejiang 313000, China 5Huzhou First People’s Hospital, Huzhou University, Huzhou, Zhejiang 313000, China *For correspondence: [email protected] Abstract Plant growth-promoting bacteria (PGPB), both endophytic and rhizotrophic bacteria, can play a beneficial role for the biocontrol of phytopathogens and promotion of plant growth. Burkholderia pyrrocinia JK-SH007, as a poplar endophyte, showed strong antagonistic ability to poplar canker disease. A Siderophore involved in the transport of iron in plants and antifungal activities, inferred that siderophore may be the key factor of JK-SH007 biological control of poplar canker disease and plant-growth-promoting even in non-host plant. The siderophore-producing characteristics and conditions of B. pyrrocinia JK-SH007 were investigated, and the impact of JK-SH007-siderophore on plant growth was examined. Chemical analysis indicated that JK-SH007-siderophore was of catecholate-type, as confirmed by HPLC and LC/MS.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Correlation Between the Oral Microbiome and Brain Resting State Connectivity in Smokers
    bioRxiv preprint doi: https://doi.org/10.1101/444612; this version posted October 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Correlation between the oral microbiome and brain resting state connectivity in smokers Dongdong Lin1, Kent Hutchison2, Salvador Portillo3, Victor Vegara1, Jarod Ellingson2, Jingyu Liu1,3, Amanda Carroll-Portillo3,* ,Vince D. Calhoun1,3,* 1The Mind Research Network, Albuquerque, New Mexico, 87106 2University of Colorado Boulder, Boulder, CO 3University of New Mexico, Department of Electrical and Computer Engineering, Albuquerque, New Mexico, 87106 * authors contributed equally to the work. Abstract Recent studies have shown a critical role for the gastrointestinal microbiome in brain and behavior via a complex gut–microbiome–brain axis, however, the influence of the oral microbiome in neurological processes is much less studied, especially in response to the stimuli in the oral microenvironment such as smoking. Additionally, given the complex structural and functional networks in brain system, our knowledge about the relationship between microbiome and brain functions on specific brain circuits is still very limited. In this pilot work, we leverage next generation microbial sequencing with functional MRI techniques to enable the delineation of microbiome-brain network links as well as their relations to cigarette smoking. Thirty smokers and 30 age- and sex- matched non-smokers were recruited for measuring both microbial community and brain functional networks. Statistical analyses were performed to demonstrate the influence of smoking on: the taxonomy and abundance of the constituents within the oral microbial community, brain functional network connectivity, and associations between microbial shifts and the brain signaling network.
    [Show full text]
  • CTA with Carbohydrates Is a Semi-Solid Medium Suitable for the Determination of Fermentation Reactions of Fastidious Microorganisms
    Administrative Offices Phone: 207-873-7711 Fax: 207-873-7022 Customer Service Phone: 1-800-244-8378 P.O. Box 788 Fax: 207-873-7022 Waterville, Maine 04903-0788 RT. 137, China Road Winslow, Maine 04901 TECHNICAL PRODUCT INFORMATION CYSTINE TRYPTIC AGAR [CTA] w/ or w/o CARBOHYDRATES Catalog No: T1400 Control (w/o Carbohydrates) T1410 CTA w/DEXTROSE T1440 CTA w/MALTOSE T1420 CTA w/FRUCTOSE T1445 CTA w/MANNITOL T1430 CTA w/LACTOSE T1450 CTA w/SUCROSE T1435 CTA w/XYLOSE T0340 CTA w/SORBOSE T0350 CTA w/INULIN T0355 CTA w/SORBITOL INTENDED USE: CTA with carbohydrates is a semi-solid medium suitable for the determination of fermentation reactions of fastidious microorganisms. CTA medium without carbohydrates is suitable for maintenance of organisms, and for detection of motility. HISTORY/SUMMARY: CTA medium has been accepted for the determination of carbohydrate utilization for a number of fastidious organisms, particularly Neisseria species and anaerobes. It has also been reported useful in fermentation studies of yeast. As a maintenance medium without carbohydrates, it supports the growth of organisms such as Neisseria, Pasteurella, Streptococci, Brucella, Corynebacteria and others. Motility can be detected in the semisolid medium when inoculated by stab line. PRINCIPLES: The base medium is free of carbohydrates and meat extracts. It contains Cystine and Casein Peptone as nutrients for the growth of fastidious organisms. Phenol red is added as an indicator of fermentation reactions. Carbohydrates are usually incorporated in the medium in 1% final concentrations. If a microorganism is inoculated in the medium containing a carbohydrate, and is capable of fermenting it, the medium indicator will turn from orange red to yellow.
    [Show full text]