Biocontrol of Sclerotinia Stem Rot of Canola by Bacterial Antagonists and Study of Biocontrol Mechanisms Involved

Total Page:16

File Type:pdf, Size:1020Kb

Biocontrol of Sclerotinia Stem Rot of Canola by Bacterial Antagonists and Study of Biocontrol Mechanisms Involved BIOCONTROL OF SCLEROTINIA STEM ROT OF CANOLA BY BACTERIAL ANTAGONISTS AND STUDY OF BIOCONTROL MECHANISMS INVOLVED by Yilan Zhang A Thesis Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada © Yilan Zhang 2004 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION PAGE Biocontrol of Sclerotinia Stem Rot of Canola by Bacterial Antagonists and Study of Biocontrol Mechanisms Involved By Yilan Zhang A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of Master of Science Yilan Zhang © 2004 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of the this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to the Univesity Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author’s written permission. ACKNOWLEGEMENTS Fist of all, I would like to express my appreciation to my supervisor Dr. Dilantha Fernando for his guidance in my experiments, and support given at conference presentations and applying for several travel awards. Only with your patience, kindness and encouragement I could grow as a student and plant pathologist. I also appreciate the help of my co-supervisor Dr. Fouad Daayf, for the advice and support for my project during my Masters program. I would also like to thank both of you for your great input on my thesis writing. To two of my other committee members, Dr. Annemieke Farenhorst and Dr. Georg Hausner, thank you very much for your great effort on advising me in my project and thesis. Special thanks to Paula Parks, Alvin Iverson and Lorne Adam for your technical support. Also a big thank you to my lab mates for your continuous support and help. Special thanks to Clinton Jurke for providing breeder tents and some of the pictures. A very special thank you to Dr. Teresa de Kievit and Chrystal Berry for the work on southern blots. I thank Dr. Tim Paulitz for giving me the idea to investigate bacterial antibiotic-related genes using PCR. I also appreciate the staff and fellow graduate students in Plant Science who helped me on my project and shared the fun at BBQ’s and parties… I would like to thank my parents for their never changed love and support. The mountains and oceans would never separate our hearts being close to each other. Only when I live far away from you, I realize how much you sacrificed in making me an independent person. I also would like to thank the life itself. I had fully experienced the interesting, exciting and frustrations in life in Canada in the past two years. I survived and I did a good job! Nothing to regret! II TABLE OF CONTENTS ACKNOWLEDGEMENTS ………………………………………………………… II TABLE OF CONTENTS ...…………………………………………...…………… III LIST OF TABLES .………………..………………………………….…………….VI LIST OF FIGURES ………………………………………………………….……..VII ABSTRACT ……………………………………………………………….……..…IX FORWARD ……………………………………………………………….………...XI 1.0 INTRODUCTION ……………………………………………….…………...1 2.0 LITERATURE REVIEW ……………………………………………….…….4 2.1 Canola………………………………………………………………………4 2.1.1 Crop History……………………………………………………...4 2.1.2 Crop usage…….………………...…………………………….….6 2.1.3 Transgenic canola………………………………………………...7 2.1.4 Production and economic importance……..……………………..8 2.1.5 Growth stages and condition……………………………………..9 2.1.6 Diseases on canola……………………………………………….10 2.2 Sclerotinia sclerotiorum ……………………………………………….….11 2.2.1 Introduction………………………………………………………11 2.2.2 Taxonomy………………………………………………………..12 2.2.3 Host range..………………………………………………………12 2.2.4 Economic importance……………………………………………13 2.2.5 Disease cycle, infection and symptomology…………………….13 2.2.6 Epidemiology……………………………………………….……17 2.3 Management of S. sclerotiorum on canola…………………….…………..18 2.3.1 Host resistance…………………………………………………...18 2.3.2 Cultural management…………………………………………….18 2.3.3 Disease forecasting…..………………………………………..…19 2.3.4 Chemical control…………………………………………………20 2.3.5 Biological control……………………………………………….. 20 2.4 Biological control……………………………………………………….….20 2.4.1 Introduction…………………………………………….…………20 2.4.2 Biocontrol mechanisms…………………………………………..21 2.4.2.1 Antibiosis……………………………………………….21 2.4.2.1.1 Introduction……….….…………………………21 2.4.2.1.2 Major bacterial antibiotics in biological control..22 2.4.2.1.3 Identification and characterization of antibiotic- related genes / gene clusters…………………….25 2.4.2.2 Plant induced resistance………………………….….…26 III 2.4.2.2.1 Introduction…………………………………….26 2.4.2.2.2 Induced systemic resistance…………….….…..27 2.4.2.2.3 Systemic acquired resistance…………………...28 2.4.2.2.4 Plant defence-related secondary metabolites…...28 2.4.2.2.5 Plant phenolics………………………………….30 2.4.2.3 Plant growth promoting rhizobacteria …………………31 2.4.2.4 Competition…………………………………………….31 2.4.2.5 Parasitism and predation……………………………..…32 2.4.2.6 Other mechanisms……………………………………...33 2.4.3 Biocontrol of S. sclerotiorum…………………………………….34 3.0 EVALUATION OF BIOLOGICAL CONTROL OF SCLEROTINIA SCLEROTIORUM ON CANOLA (BRASSICA NAPUS) BY BACTERIA THROUGH IN VITRO SCREENINGS, GREENHOUSE EXPERIMENTS, AND A FIELD STUDY……….……………………………………………….38 3.1 Abstract……………………………………………………………………..38 3.2 Introduction…………………………………………………………………39 3.3 Materials and methods……………………………………………………...41 3.3.1 Bacillus spp. isolation and storage……………………………...41 3.3.2 Evaluation of bacterial antagonism through general plate inhibition assays…………………………………………………42 3.3.3 Antagonism through production of volatile compounds………..43 3.3.4 Testing for the presence of the oxalate oxidase enzyme………..44 3.3.5 Bacterial indentification………………………………………...44 3.3.6 Production of rifampicin-resistant strains and establishing of growth curves…………………………………………………..45 3.3.7 Evaluation of biocontrol agents against sclerotinia on canola in the greenhouse………………………………………………..46 3.3.8 Evaluation of the effect of time of application of Bacillus spp. BS6 against sclerotinia on canola and bacterial survival in the greenhouse………………………………………………………47 3.3.9 Evaluation of biocontrol agents under field conditions…………48 3.4 Results………………………………………………………………………51 3.4.1 Bacterial isolation and identification…………………………..51 3.4.2 Evaluation of bacterial antagonism through general plate inhibition assays, inhibitory volatile production and oxidase enzyme presence……………………………………………….51 3.4.3 Production of rifampicin-resistant strains and establishing of growth curves………………………………………………….55 IV 3.4.4 Evaluation of biocontrol agents against sclerotinia on canola in the greenhouse……………………………………………..….55 3.4.5 Effect of the time of application of strain BS6 against sclerotinia on canola in the greenhouse……………………….56 3.4.6 Evaluation of biocontrol agents under field conditions…….…63 3.5 Discussion………………………………………………………...………...64 4.0 DETECTION OF ANTIBIOTIC-RELATED GENES FROM BACTERIAL BIOCONTROL AGENTS USING POLYMERASE CHAIN REACTION ……………………………………………………………………………….….74 4.1 Abstract……………………………………………………………………...74 4.2 Introduction………………………………………………………………….75 4.3 Materials and methods………………………………………………………77 4.3.1 Genomic DNA extraction…………………………………..……79 4.3.2 DNA quantification……………………………………….……..80 4.3.3 PCR reactions……………………………………………………80 4.3.4 Sequencing and BLAST search…………………….……………82 4.4 Results……………………………………………………………………….82 4.4.1 Genomic DNA…………………………………………….……..82 4.4.2 PCR reactions………………………………………………...….83 4.4.3 Sequencing and BLAST search………………………………….84 4.5 Discussion……………………………………………………………………88 5.0 PLANT INDUCED RESISTANCE MEDIATED BY SCLEROTINIA SCLEROTIORUM AND BACTERIAL BIOCONTROL AGENT BACILLUS AMYLOLIQUEFACIENS BS6 ………………………………………………....91 5.1 Abstract………………………………………………………….………..….91 5.2 Introduction………………………………………………………………..…92 5.3 Materials and methods……………………………………………………….93 5.3.1 Greenhouse experiment………………………………………….93 5.3.2 Phenolics extraction and fractionation…………………………...96 5.3.3 HPLC analysis…………………………………………………...97 5.4 Results…………………………………………………………………..……98 5.4.1 Greenhouse experiment…………..…………………..……….…98 5.4.2 HPLC analysis………………………………………..……….…99 5.5 Discussion……………………………………………………………….....106 6.0 GENERAL DISCUSSION AND CONCLUSIONS..….………………………110 7.0 REFERENCE LIST………………..………………………………….…….….115 V LIST OF TABLES Tables Pages 2.1 Fungal diseases and pathogens on canola (Martens et al. 1994)…….………..….11 3.1 Nineteen bacterial strains isolated from canola leaves…………………………...52 3.2 Bacterial sources and identifications……………………………………………..53 4.1 Bacterial antibiotic-gene-specific primers used in this study…………………….78 . VI LIST OF FIGURES Figures Pages 2.1 Life cycle of Sclerotinia sclerotiorum (Lib.) de Bary on canola……………...…14 3.1 S. sclerotiorum growth inhibition by strain BS6 on PDA and LBA……………..54 3.2 S. sclerotiorum growth inhibition by inhibitory volatiles produced by strains H and E12………….…………………………………………….……………….54 3.3 Bacterial growth curves for rifampicin-resistant strains PA-23, #41, BS8, BS6, H, and E16….……………..……………………………………………………...57 3.4 Sclerotinia disease incidence (DI) in the greenhouse test using five bacterial antagonists….……………………………………………………………………..58 3.5 Inhibition of sclerotinia disease progression in the greenhouse by using five bacterial antagonists.…………….………………………………………………..59 3.6 Canola yield
Recommended publications
  • Sclerotinia Sclerotiorum: History, Diseases and Symptomatology, Host Range, Geographic Distribution, and Impact L
    Symposium on Sclerotinia Sclerotinia sclerotiorum: History, Diseases and Symptomatology, Host Range, Geographic Distribution, and Impact L. H. Purdy Plant Pathology Department, University of Florida, Gainesville, 32611. I am pleased to have this opportunity to discuss some facets of studies do not exist if de Bary's work with sclerotia and other the accumulated information about Sclerotinia sclerotiorum structures is not considered. However, de Bary was seeking to deBary that comprise the present understanding of this most establish an understanding of events related to the life cycle of S. interesting fungus. It will be obvious that many contributions to the sclerotiorum rather than looking for differences in isolates of the literature about S. sclerotiorum were not considered in the fungus. Korf and Dumont (23) pointed out that taxonomic preparation of this paper. However, I hope that what is presented is positions have been assigned on the basis of gross (my italics) historically accurate and that this initial paper of the Sclerotinia measurement of asci, ascospores, paraphyses, apothecia, and Symposium will help initiate a new focus on S. sclerotiorum. sclerotia of the fungus, and I add, the associated host plant. These are facts and are accepted as such; however, Korf and Dumont (23) HISTORY stated that transfer of epithets to Whetzelinia would be premature until the requisite microanatomical studies are undertaken. Al- In the beginning, Madame M. A. Libert described Peziza though it was not stated, I infer their meaning to be that, pending sclerotiorum (24); that binomial for the fungus stood until Fuckel the outcome of such studies, transfer of epithets to Whetzelinia may (14) erected and described the genus Sclerotinia; he chose to honor be made if justified by sufficient other evidence.
    [Show full text]
  • Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G
    Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G. S. Saharan • Naresh Mehta Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management Dr. G. S. Saharan Dr. Naresh Mehta CCS Haryana Agricultural University CCS Haryana Agricultural University Hisar, Haryana, India Hisar, Haryana, India ISBN 978-1-4020-8407-2 e-ISBN 978-1-4020-8408-9 Library of Congress Control Number: 2008924858 © 2008 Springer Science+Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Foreword The fungus Sclerotinia has always been a fancy and interesting subject of research both for the mycologists and pathologists. More than 250 species of the fungus have been reported in different host plants all over the world that cause heavy economic losses. It was a challenge to discover weak links in the disease cycle to manage Sclerotinia diseases of large number of crops. For researchers and stu- dents, it has been a matter of concern, how to access voluminous literature on Sclerotinia scattered in different journals, reviews, proceedings of symposia, workshops, books, abstracts etc. to get a comprehensive picture. With the publi- cation of book on ‘Sclerotinia’, it has now become quite clear that now only three species of Sclerotinia viz., S.
    [Show full text]
  • Relationships Among Alfalfa Resistance to Sclerotinia Crown and Stem Rot, Sclerotinia Trifoliorum and Oxalic Acid
    African Journal of Biotechnology Vol. 11(72), pp. 13690-13696, 6 September, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.796 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Relationships among alfalfa resistance to Sclerotinia crown and stem rot, Sclerotinia trifoliorum and oxalic acid Liatukienė Aurelija, Liatukas Žilvinas* and Ruzgas Vytautas Institute of Agriculture, Research Centre for Agriculture and Forestry, Instituto av. 1, Akademija LT58344, Kėdainiai district, Lithuania. Accepted 11 June, 2012 Sclerotinia crown and stem rot (SCSR) of alfalfa caused by Sclerotinia trifoliorum is one of the main constraints for efficient alfalfa cultivation in temperate climate all over the world. The resistance of 200 alfalfa accessions to Sclerotinia crown and stem rot was evaluated during 2010 to 2011 in the field nursery established in 2009. The resistance of alfalfa accessions germinating seeds to mycelium of Sclerotinia trifoliorum and oxalic acid (OA) concentrations of 10, 20, 30 mM was screened under laboratory conditions. The statistically significant differences at P<0.05 were determined among evaluated alfalfa accessions resistance to all screened factors. The reactions of alfalfa accessions to disease under field conditions showed that majority of the non-adapted accessions were heavily diseased, whereas the resistant accessions had only negligible disease severity. The germination of accessions seeds at oxalic acid concentration of 30 mM showed strong correlation (r = -0.817**, P<0.01) with SCSR severity in 2011. Among OA concentrations, this one showed the highest correlation rate with SCSR as well as was the least time consuming method. This method of seeds germination on mycelium of S.
    [Show full text]
  • Three New Species of B Otryotinia on Ranunculaceae1
    THREE NEW SPECIES OF B OTRYOTINIA ON RANUNCULACEAE1 G. L. HENNEBERT2 Institut agronomique, Universite de Louvain, Hervelee, Belgium AND J. W. GROVES3 Research Branch, Department of Agriculture, Ottawa, Canada Received October 10, 1962 Abstract Three new species of Botryotinia on Caltha palustris L., Ranunculus septen- trionalis Poir., and Ficaria verna Huds. (Ranunculaceae) are described as B. calthae Hennebert and Elliott, B. ranunculi Hennebert and Groves, and B. ficariarum Hennebert. Each of the three species has a Botrytis state of the 73. cinerea complex, and they thus constitute additions to the species already segregated from that complex, i.e. Botryotinia fuckeliana, 73. convoluta, B. draytoni, and B. pelargonii. The Botrytis state of B. ficariarum can be distinguished morp­ hologically. While B. ranunculi is a North American species and B. ficariarum an European one, B. calthae is reported from both continents. Introduction Botryotinia, a genus of the Sclerotiniaceae, was erected by Whetzel (1945) for four species formerly assigned to Sclerotinia Fuckel, but which differ from the true Sclerotinia species mainly in their erumpent, planoconvexoid sclerotia which are firmly attached to the substrate, and in the possession of a conidial state belonging to the form-genus Botrytis Pers. The type species is Botryotinia convoluta (Drayton) Whetzel in which the conidial state is a Botrytis of the cinerea type or B. cinerea sensu lato, and the other species included were Botryotinia fuckeliana (De Bary) Whetzel, of which the conidial state is Botrytis cinerea Pers. or B. cinerea sensu stricto, and Botryotinia ricini (Godfrey) Whetz. and B. porri (v. Beyma) Whetz. In the latter two species the conidial states would not be considered Botrytis species of the cinerea type.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Burkholderia Pyrrocinia JK-SH007 Enhanced Seed Germination, Cucumber Seedling Growth and Tomato Fruit Via Catecholate- Siderophore-Mediation
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19F–065/2019/22–4–779–786 DOI: 10.17957/IJAB/15.1130 http://www.fspublishers.org Full Length Article Burkholderia pyrrocinia JK-SH007 Enhanced Seed Germination, Cucumber Seedling Growth and Tomato Fruit via Catecholate- Siderophore-Mediation Li-Jing Min1,2, Xiao-Qin Wu1, De-Wei Li1,3, Ke Chen4, Lu Guo5 and Jian-Ren Ye1* 1Southern China Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China 2College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China 3The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA 4Huzhou Institute for Food and Drug Control, Huzhou, Zhejiang 313000, China 5Huzhou First People’s Hospital, Huzhou University, Huzhou, Zhejiang 313000, China *For correspondence: [email protected] Abstract Plant growth-promoting bacteria (PGPB), both endophytic and rhizotrophic bacteria, can play a beneficial role for the biocontrol of phytopathogens and promotion of plant growth. Burkholderia pyrrocinia JK-SH007, as a poplar endophyte, showed strong antagonistic ability to poplar canker disease. A Siderophore involved in the transport of iron in plants and antifungal activities, inferred that siderophore may be the key factor of JK-SH007 biological control of poplar canker disease and plant-growth-promoting even in non-host plant. The siderophore-producing characteristics and conditions of B. pyrrocinia JK-SH007 were investigated, and the impact of JK-SH007-siderophore on plant growth was examined. Chemical analysis indicated that JK-SH007-siderophore was of catecholate-type, as confirmed by HPLC and LC/MS.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Functional Identification of the Prnabcd Operon and Its Regulation
    Manuscript Click here to download Manuscript manuscript2366.docx Click here to view linked References Functional identification of the prnABCD operon and its regulation in 1 2 Serratia plymuthica 3 4 5 6 Xiaoguang Liu1*, Xiaoli Yu1, Yang Yang1, Stephan Heeb2, Shao Gao3, Kok Gan Chan4, 7 8 2 5 9 Miguel Cámara , Kexiang Gao 10 11 12 13 1 Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China, 14 15 2 Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, University Park, NG7 2RD, 16 17 United Kingdom 18 19 3 Department of Architecture and Built Environment, Faculty of Engineering, The University of Nottingham, University 20 21 Park, NG7 2RD, United Kingdom 22 23 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 24 25 Kuala Lumpur 50603, Malaysia 26 27 5 Department of Plant Pathology, Shandong Agricultural University, Tai’an 217018, China 28 29 * Correspondence to Xiaoguang Liu [email protected]; Tel: +8651188791702; Fax: +865118791923; Institute of 30 31 Life Sciences, Jiangsu University, Zhenjiang, 212013, China 32 33 34 35 Abstract 36 37 38 39 The antibiotic pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite that plays an 40 41 important role in the biocontrol of plant diseases due to its broad-spectrum of antimicrobial 42 43 activities. The PRN biosynthetic gene cluster remains to be characterized in Serratia 44 45 plymuthica, though it is highly conserved in PRN-producing bacteria. To better understand 46 47 PRN biosynthesis and its regulation in Serratia, the prnABCD operon from S.
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]
  • Biological Control of Sclerotinia Sclerotiorum (Lib.) De Bary, the Causal Agent of White Mould Disease in Red Cabbage, by Some Bacteria
    Vol. 52, 2016, No. 3: 188–198 Plant Protect. Sci. doi: 10.17221/96/2015-PPS Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary, the Causal Agent of White Mould Disease in Red Cabbage, by Some Bacteria Elif TOZLU 1, Parisa MOHAMMADI 1, Merve SENOL KOTAN 2, Hayrunnisa NADAROGLU 3 and Recep KOTAN 1 1Department of Plant Protection, 2Department of Biotechnology, Faculty of Agriculture, and 3Department of Food Technology, Erzurum Vocational Training School, Atatürk University, Erzurum, Turkey Abstract Tozlu E., Mohammadi P., Senol Kotan M., Nadaroglu H., Kotan R. (2016): Biological control of Sclero- tinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage, by some bacteria. Plant Protect. Sci., 52: 188–198. Sclerotinia sclerotiorum (Lib.) de Bary is the causal agent of white mould, stem, and fruit rot diseases on a wide va- riety of crop plants including cabbage (Brassica oleracea L.) in field and storage. Control of this pathogen by using commercial disease management methods is extremely difficult. Therefore, this study was performed to develop an alternative and effective control method for the diseases by using biocontrol bacteria – Bacillus subtilis (strains TV-6F, TV-17C, TV-12H, BA-140 and EK-7), Bacillus megaterium (strains TV-103B), and Bacillus pumilus (strains RK-103) on Petri plate assays and on red cabbage in pot assays. On Petri plates, all of the tested bacterial strains showed the zone of inhibition against the pathogen fungus ranging 15.00–26.50 mm. Their percentage inhibition rates and lesion length ranged 42.64–79.41% and 0.02–4.50 cm in pot assays, respectively.
    [Show full text]
  • Broad-Spectrum Antimicrobial Activity by Burkholderia Cenocepacia Tatl-371, a Strain Isolated from the Tomato Rhizosphere
    RESEARCH ARTICLE Rojas-Rojas et al., Microbiology DOI 10.1099/mic.0.000675 Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Fernando Uriel Rojas-Rojas,1 Anuar Salazar-Gómez,1 María Elena Vargas-Díaz,1 María Soledad Vasquez-Murrieta, 1 Ann M. Hirsch,2,3 Rene De Mot,4 Maarten G. K. Ghequire,4 J. Antonio Ibarra1,* and Paulina Estrada-de los Santos1,* Abstract The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain- specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected.
    [Show full text]
  • Phenotypic and Genetic Diversity of Pseudomonads
    PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria.
    [Show full text]