<<

Introduction Genie CC 0π tuning Analysis Conclusion

GENIE/Professor framework for data global fit A first application: global fit of CC 0π datasets

Marco Roda - [email protected] on behalf of GENIE collaboration

University of Liverpool

19 April 2017 IPPP/NuStec

1 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Outline

Introduction Genie status vs recent datasets Tuning mechanism Tuning results Conclusions

Thanks to IPPP Associateship award

2 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Outline

Introduction Genie status vs recent datasets Tuning mechanism Tuning results Conclusions

Thanks to IPPP Associateship award

3 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Why 0π Why care about 0π?

We want to study flavour and mixing CP violation

Oscillation experiments T2k, NOvA DUNE, HyperK Beam ∼ few GeV

CC 0π is the dominant reaction Two body reaction Ideal for ν energy estimation ...... on free

4 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

0π puzzle CC Quasi-Elastic - 0π on single nucleons

Neutrinos Antineutrinos Theoretically  2003-2017, GENIE - http://www.genie-mc.org  2003-2017, GENIE - http://www.genie-mc.org ] ] 2 understood 2 2 cm cm -38

-38 1 Well constrained by 1.5

experimental 1 information 0.5 CCQE [10 0.5 CCQE [10 µ µ ν scattering ν 0 0 Neutron β decay 10−1 1 10 1 10 102

ANL_12FT,1 ANL_12FT,3 Eν [GeV] BNL_7FT,2 Gargamelle,3 Eν [GeV] Experiments on BEBC,12 BNL_7FT,3 FNAL_15FT,3 Gargamelle,2 Gargamelle,5 NOMAD,3 Hydrogen / Deuterium NOMAD,2 SERP_A1,0 SERP_A1,2 SKAT,9 SERP_A1,1 SKAT,8

5 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

0π puzzle CC Meson Exchange Current - 0π on heavy nuclei

On higher A nuclei things are complicated

CCQE is not enough to describe data MiniBooNE MiniBooNE data

MEC is required nucleons interactions 2p-2h np-nh > 20 % effect On carbon

[Martini et al. PRC 84 055502 (2011)]

6 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

0π puzzle Effect of MEC on energy reconstruction

CCQE is a 2-body reaction Eν depends is just a function of lepton momentum and angle

MEC is not a 2-body reaction low energy tails in recontructed energy distributions

MEC also relevant for CP searches np-nh is different for ν/ν¯

⇒ MEC is important to achieve Martini et al. precise measurements

7 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

0π puzzle Search for 2p-2h

ArgoNEUT

Characteristic events 2 back-to-back nucleons

Nuclear effect can change observed topology migrations in the number of observed protons [Phys.Rev. D90 (2014) 1, 012008] future LarTPCs (or gas TPCs) important role Disentangle FSI from MEC CC 0π samples proton multiplicity

Important dataset that will "soon" be available

[Ulrich Mosel]

8 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

MC generators

What can we do as generator people? Comparing different data and models Being quantitative ⇒ highlight tensions Call for experiments: we need full covariance matrices feedback for experiments ⇒ drive the format of cross section releases ⇒ hint toward key measurements Global fits Model ⇒ Cross sections is not analytic

What is the status of Genie in all of this?

9 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

MC generators

What can we do as generator people? Comparing different data and models Being quantitative ⇒ highlight tensions Call for experiments: we need full covariance matrices feedback for experiments ⇒ drive the format of cross section releases ⇒ hint toward key measurements Global fits Model ⇒ Cross sections is not analytic

What is the status of Genie in all of this?

10 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

MC generators

What can we do as generator people? Comparing different data and models Being quantitative ⇒ highlight tensions Call for experiments: we need full covariance matrices feedback for experiments ⇒ drive the format of cross section releases ⇒ hint toward key measurements Global fits Model ⇒ Cross sections is not analytic

What is the status of Genie in all of this?

11 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Models Genie - Models for 0π

Default - G00_00a No MEC CCQE process is LwlynSmith Model Dipole Axial Form Factor - Depending on MA = 0.99 GeV Nuclear model: Fermi Gas Model - Bodek, Ritchie

Default + MEC - G16_01b with Empirical MEC CCQE process is LwlynSmith Model Dipole Axial Form Factor - Depending on MA = 0.99 GeV Nuclear model: Fermi Gas Model - Bodek, Ritchie

Nieves, Simo, Vacas Model - G16_02a Theory motivated MEC CCQE process is Nieves Dipole Axial Form Factor - Depending on MA = 0.99 GeV Nuclear model: Local Fermi Gas Model

G17_02a (not presented in this talk) - G17_02a with Z-Expansion for Axial form factor Get rid of MA

12 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

CCQE MiniBooNE CCQE

 2003-2017, GENIE - http://www.genie-mc.org 2 [GeV]

Both ν and ν¯ µ T Double differential cross section 2 1.5 flux integrated

No correlations 1 1 Preferred model is Nieves Model (G16_02a) 0.5 excellent agreement for ν χ2 = 101/137 DoF 0 −1 −0.5 0 0.5 1 Cosθ worse for ν¯ µ -38 ∂2σ(ν CC 0π)/∂ Cosθ /∂ T [10 cm2/GeV/n] χ2 = 176/78 DoF µ µ µ Data: miniboone_nuccqe_2010

13 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

CCQE MiniBooNE CCQE

Tµ ∈[0.4; 0.5 ] GeV

Both ν and ν¯ 2 /GeV/n] Double differential cross section 2 cm

flux integrated -38 1.5 [10 µ T ∂ / µ

No correlations θ 1 Cos ∂

Preferred model is Nieves Model )/ π (G16_02a) 0.5 CC 0 µ

ν ν excellent agreement for ( σ

2 2

χ = 101/137 DoF ∂ 0 −1 −0.5 0 0.5 1 worse for ν¯ miniboone_nuccqe_2010 Cosθµ 2 2 χ = 176/78 DoF trunk:G00_00a:miniboone_fhc χ = 40.6/17 DoF trunk:G16_01b:miniboone_fhc χ2 = 64.8/17 DoF

trunk:G16_02a:miniboone_fhc χ2 = 14.3/17 DoF

14 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

CCQE T2K ND280 0π

 2003-2017, GENIE - http://www.genie-mc.org

Double differential cross section [GeV] µ 6

P 1 flux integrated

Fully correlated 4

Tensions between datasets 0.5

Preferred model is G16_01b 2 χ2 = 135/67 DoF

all models look reasonable "By eye" 0 0 estimation −1 −0.5 0 0.5 1 Cosθ correlation is complicated µ ∂2σ/∂ Cosθ /∂ P [10-38 cm2/GeV/n] We can’t ignore it! µ µ Data: t2k_nd280_numucc0pi_2015

15 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

CCQE T2K ND280 0π

Double differential cross section flux integrated

Bin ∈ [ 36; 41 ]

1

Fully correlated /GeV/n] 2 cm -38 [10 µ

P 0.5

Tensions between datasets ∂ / µ θ Cos ∂

Preferred model is G16_01b / σ 2 ∂ Cos Cos Cos Cos Cos Cos 2 0 θ θ θ θ θ θ χ = 135/67 DoF µ = 0.875 P µ = 0.875 P µ = 0.875 P µ = 0.92 P µ = 0.92 P µ = 0.92 P µ = 0.9 GeV µ = 1.25 GeV µ = 15.75 GeV µ = 0.2 GeV µ = 0.45 GeV µ = 0.55 GeV

t2k_nd280_numucc0pi_2015 trunk:G00_00a:t2k_nd280_numu_fhc χ2 = 11.5/6 DoF trunk:G16_01b:t2k_nd280_numu_fhc χ2 = 3.43/6 DoF all models look reasonable "By eye" trunk:G16_02a:t2k_nd280_numu_fhc χ2 = 28.1/6 DoF estimation correlation is complicated We can’t ignore it!

16 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Genie status GENIE

New Models MEC models Empirical Nieves Simo Vacas

Better CCQE model Nieves ...

Nuclear models

Multiple combinations Need to check the balance between each component will have a tuning!

17 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Genie status GENIE

New Models MEC models Empirical Nieves Simo Vacas

Better CCQE model Nieves ...

Nuclear models

Multiple combinations Need to check the balance between each component will have a tuning!

18 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Comparisons The Comparisons

The GENIE suite contains a package devoted to comparing GENIE predictions against publicly released datasets. Crucial technology for new GENIE global fit to neutrino scattering data

Provides the opportunity to improve and develop GENIE models

All sorts of data Modern Neutrino Cross Section measurement nuclear targets typically flux-integrated differential cross-sections MiniBooNE, T2K, MINERvA

Historical Neutrino Cross Section Measurement experiment

Measurements of neutrino-induced hadronic system characteristics

19 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Professor

http://professor.hepforge.org Numerical assistant Developed for ATLAS experiment I(p) used instead of a full MC 1 MC runs subset of param space 2 sample bin’s behaviour 3 Parametrization I(p) Polinomial interpolation Repeat for each bin

a parameterization Ij (p) for each bin p Minimize according to~I(p)

∼ 15 parameters

Special thanks to H. Schulz based here in Durham

20 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Professor

http://professor.hepforge.org Numerical assistant Developed for ATLAS experiment I(p) used instead of a full MC 1 MC runs subset of param space 2 sample bin’s behaviour 3 Parametrization I(p) Polinomial interpolation Repeat for each bin

a parameterization Ij (p) for each bin p Minimize according to~I(p)

∼ 15 parameters

Special thanks to H. Schulz based here in Durham

21 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Professor

http://professor.hepforge.org Numerical assistant Developed for ATLAS experiment I(p) used instead of a full MC 1 MC runs subset of param space interpolated value 2 sample bin’s behaviour 3 Parametrization I(p) Polinomial interpolation Repeat for each bin

a parameterization Ij (p) for each bin p Minimize according to~I(p)

∼ 15 parameters

Special thanks to H. Schulz based here in Durham

22 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Professor

http://professor.hepforge.org Numerical assistant Developed for ATLAS experiment I(p) used instead of a full MC 1 MC runs subset of param space interpolated value 2 sample bin’s behaviour 3 Parametrization I(p) Polinomial interpolation Repeat for each bin

a parameterization Ij (p) for each bin p Minimize according to~I(p)

∼ 15 parameters

Special thanks to H. Schulz based here in Durham

23 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Professor

http://professor.hepforge.org Numerical assistant Developed for ATLAS experiment I(p) used instead of a full MC 1 MC runs subset of param space interpolated value 2 sample bin’s behaviour 3 Parametrization I(p) Polinomial interpolation Repeat for each bin

a parameterization Ij (p) for each bin p Minimize according to~I(p)

∼ 15 parameters

Special thanks to H. Schulz based here in Durham

24 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Professor Advantages

Highly parallelizable independent from the minimization

All kind of parameters can be tuned Not only reweight-able

Advanced system Take into account correlations weights specific for each bin and/or dataset Proper treatment while handling multiple datasets Restrict the fit to particular subsets

Nuisance parameters can be inserted proper treatment for datasets without correlations (MiniBooNE)

Reliable minimization algorithm based on Minuit

25 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Inputs Datasets - 298 data points

Data 2.2

2

1.8 MiniBooNE νµ CCQE 1.6 2D histogram 1.4 137 points 1.2 1

0.8 MiniBooNE ν¯µ CCQE 0.6 2D histogram 0.4 78 points 0.2 0 T2K ND280 0π (2015)

irregular 2D histogram Data Covariance

67 points bin 0.14

250 MINERvA νµ CCQE 0.12

0.1 1D histogram 200 0.08 8 points 150 0.06 MINERvA ν¯µ CCQE 100 0.04

1D histogram 0.02 50

8 points 0 0 0 50 100 150 200 250 bin

26 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Inputs Model and parameters

Default + Empirical MEC G16_01b in the new naming scheme Parameters: QEL-MA ∈ [0.7; 1.8] GeV - Default value is 0.99 GeV QEL-CC-XSecScale ∈ [0.8; 1.2] - Default value is 1 RES-CC-XSecScale ∈ [0.5; 1.5] - Default value is 1 MEC-FracCCQE ∈ [0; 1] - Default value is 0.45 FSI-PionMFP-Scale ∈ [0.6; 1.4] - Default value is 1 FSI-PionAbs-Scale ∈ [0.4; 1.6] - Default value is 1

No priors on the parameters Considering on MA

27 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Outputs Professor Output

Parameter Covariance

5 0.005

4 Parameters best fit 0.004

0 MA 3 0.003

1 QEL-CC-XSecScale 0.002 2 RES-CC-XSecScale 2 0.001 3 MEC-FracCCQE 1 0 4 FSI-PionMFP-Scale 0

5 FSI-PionAbs-Scale 0 1 2 3 4 5

Prediction covariance Prediction Covariance due to the propagation of the param. covariance 0.007 So far not used 250 0.006 0.005 200 Tool to propagate systematics 0.004 150 0.003

parameters 0.002 100 0.001

0 50

−0.001

0 0 50 100 150 200 250

28 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Outputs Sheer results

Parameter Best fit Nominal 2 MA (GeV/c ) 1.21 ± 0.02 0.99 QEL-CC-XSecScale 0.95 ± 0.02 1 RES-CC-XSecScale 1.02 ± 0.05 1 MEC-FracCCQE 0.53 ± 0.08 0.45 FSI-PionMFP-Scale 0.75 ± 0.04 1 FSI-PionAbs-Scale 0.87 ± 0.07 1

MA is reasonably low

Scaling factors for single processes are compatible with nominal values

You can find the complete comparisons plots in the indico page

29 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Single datasets Single datasets

Datasets were fitted separately

Parameter Neutrino fit Anti-neutrino fit Global fit 2 MA (GeV/c ) 1.17 ± 0.02 1.26 ± 0.03 1.21 ± 0.02 QEL-CC-XSecScale 0.93 ± 0.01 0.97 ± 0.02 0.95 ± 0.02 RES-CC-XSecScale 0.86 ± 0.05 0.98 ± 0.09 1.02 ± 0.05 MEC-FracCCQE 0.85 ± 0.03 0.7 ± 0.1 0.53 ± 0.08 FSI-PionMFP-Scale 0.87 ± 0.02 1.39 ± 0.03 0.75 ± 0.04 FSI-PionAbs-Scale 1.51 ± 0.03 0.7 ± 0.1 0.87 ± 0.07

Fit Results Neutrino fit Anti-neutrino fit Global fit Nominal Values 2 Miniboone νµ χ 152 / 137 171 / 137 138 / 137 441 / 137 2 MiniBooNE ν¯µ χ 60 / 78 32.4 / 78 36.2 / 78 50.4 / 78 T2K χ2 237 / 67 276 / 67 252 / 67 135 / 67 2 MINERvA νµ χ 6.11 / 8 8.07 / 8 7.79 / 8 17.5 / 8 2 MINERvA ν¯µ χ 8.19 / 8 11.5 / 8 5.7 / 8 6.23 / 8 Global dataset χ2 463 / 292 499 / 292 440 / 292 650 / 298

MA and cross section scale factors are in good agreement FSI parameters are not The agreement with data is reasonable Better than original model

30 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Single datasets T2K effect on the fit

T2K ND280 data are complicated Tensions Correlations ⇒ anti-intuitive

T2K ND280 data can not even be fitted by their own with the current model ⇒ χ2 = 127/61

T2K fit results are not compatible with other dataset 2 ⇒ χ = 1023/137 vs MiniBooNE νµ CCQE ⇒ χ2 = 1567/292 vs whole fitted dataset

global fit can suffer from this Effect is clear discrepancy in low momentum Tµ < 400 MeV

No reason to remove this dataset from the fit Their effort on the error estimation should be praised 31 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Single datasets T2K effect on the fit

T2K ND280 data are complicated Tµ ∈[0.2; 0.3 ] GeV Tensions /GeV/n] 2 1 Correlations ⇒ anti-intuitive cm -38 [10 µ T ∂ / µ T2K ND280 data can not even be fitted by their own θ

Cos 0.5 ∂ )/ with the current model π CC 0 µ

2 ν ( σ

⇒ χ = 127/61 2 ∂ 0 −1 −0.5 0 0.5 1

miniboone_nuccqe_2010 Cosθµ

trunk:G16_01b:miniboone_fhc χ2 = 156/20 DoF

T2K fit results are not compatible with other dataset χ2 trunk:GlobalFit:miniboone_fhc = 31.4/20 DoF 2 ⇒ χ = 1023/137 vs MiniBooNE νµ CCQE Tµ ∈[0.3; 0.4 ] GeV 2 1.5

⇒ χ = 1567/292 vs whole fitted dataset /GeV/n] 2 cm -38

[10 1 µ T

global fit can suffer from this ∂ / µ θ Cos

Effect is clear ∂ )/ 0.5 π CC 0

discrepancy in low momentum muons µ ν ( σ 2 Tµ < 400 MeV ∂ 0 −1 −0.5 0 0.5 1

miniboone_nuccqe_2010 Cosθµ No reason to remove this dataset from the fit trunk:G16_01b:miniboone_fhc χ2 = 68.7/20 DoF trunk:GlobalFit:miniboone_fhc χ2 = 34.2/20 DoF Their effort on the error estimation should be praised 32 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Best fit plots

Best fit - MiniBooNE νµ CCQE

Cosθµ ∈[0.8; 0.9 ] Cosθµ ∈[0.9; 1 ] /GeV/n] /GeV/n] 2 2 cm cm

-38 2 -38 2 [10 [10 µ µ T T ∂ ∂ / / µ µ θ θ Cos Cos

∂ ∂ 1

)/ 1 )/ π π CC 0 CC 0 µ µ ν ν ( ( σ σ 2 2 ∂ 0 ∂ 0 0.5 1 1.5 2 0.5 1 1.5 2

Tµ [GeV] Tµ [GeV] miniboone_nuccqe_2010 miniboone_nuccqe_2010

trunk:G16_01b:miniboone_fhc χ2 = 37.3/16 DoF trunk:G16_01b:miniboone_fhc χ2 = 95.8/18 DoF

trunk:GlobalFit:miniboone_fhc χ2 = 3.08/16 DoF trunk:GlobalFit:miniboone_fhc χ2 = 15.3/18 DoF

Fit has a big impact

33 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Best fit plots

Best fit - MiniBooNE ν¯µ CCQE

Cosθµ ∈[0.6; 0.7 ] Cosθµ ∈[0.7; 0.8 ]

0.4 0.6 /GeV/n] /GeV/n] 2 2 cm cm

-38 0.3 -38

[10 [10 0.4 µ µ T T ∂ ∂ / / µ µ

θ 0.2 θ Cos Cos ∂ ∂

)/ )/ 0.2 π π 0.1 CC 0 CC 0 µ µ ν ν ( ( σ σ 2 2 ∂ 0 ∂ 0 0.5 1 1.5 2 0.5 1 1.5 2

Tµ [GeV] Tµ [GeV] miniboone_nubarccqe_2013 miniboone_nubarccqe_2013

trunk:G16_01b:miniboone_rhc χ2 = 6.28/8 DoF trunk:G16_01b:miniboone_rhc χ2 = 9.62/9 DoF

trunk:GlobalFit:miniboone_rhc χ2 = 2.37/8 DoF trunk:GlobalFit:miniboone_rhc χ2 = 3.22/9 DoF

Improvement not really necessary in this case

34 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Best fit plots Best fit - MINERvA Neutrinos Antineutrinos

 2003-2017, GENIE - http://www.genie-mc.org  2003-2017, GENIE - http://www.genie-mc.org

1.5 /proton] 2 /neutron] 2 1 /GeV 2

/GeV 1 2 cm cm -38

-38 0.5 0.5 [10 [10 2 QE 2 QE /dQ /dQ σ

σ 0 d 0 d 0 0.5 1 1.5 2 0 0.5 1 1.5 2 2 2 2 2 MINERvAExDataCCQEQ2 QQE [GeV ] MINERvAExDataCCQEQ2 QQE [GeV ]

trunk:G16_01b:minerva_numu_2013 χ2 = 17.5/8 DoF trunk:G16_01b:numubar_2013 χ2 = 6.23/8 DoF

trunk:GlobalFit:minerva_numu_2013 χ2 = 7.79/8 DoF trunk:GlobalFit:numubar_2013 χ2 = 5.7/8 DoF ⇒ "Eye evaluation" would prefer default model

35 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Best fit plots Best fit - T2K ND280

Bin ∈ [ 48; 53 ] 1 /GeV/n] 2 cm -38 [10 µ

P 0.5 ∂ / µ θ Cos ∂ / σ 2 ∂ Cos Cos Cos Cos Cos Cos θ θ θ θ θ θ 0 µ = 0.96 P µ = 0.96 P µ = 0.96 P µ = 0.96 P µ = 0.96 P µ = 0.96 P agreement with t2k has worsened µ = 0.45 GeV µ = 0.55 GeV µ = 0.65 GeV µ = 0.75 GeV µ = 0.9 GeV µ = 1.125 GeV

t2k_nd280_numucc0pi_2015 trunk:G16_01b:t2k_nd280_numu_fhc χ2 = 5.47/6 DoF not surprising trunk:GlobalFit:t2k_nd280_numu_fhc χ2 = 8.1/6 DoF ⇒ it happened also with models Bin ∈ [ 54; 59 ] /GeV/n] 2 0.3

2 cm

χ : 135 → 252 / 67 DoF -38 [10

µ 0.2 P ∂ / µ θ 0.1 Cos ∂ / σ 2 ∂ Cos Cos Cos Cos Cos Cos θ θ θ θ θ θ 0 µ = 0.96 P µ = 0.96 P µ = 0.96 P µ = 0.96 P µ = 0.99 P µ = 0.99 P

µ = 1.375 GeV µ = 1.75 GeV µ = 2.5 GeV µ = 16.5 GeV µ = 0.25 GeV µ = 0.55 GeV

t2k_nd280_numucc0pi_2015 trunk:G16_01b:t2k_nd280_numu_fhc χ2 = 6.66/6 DoF trunk:GlobalFit:t2k_nd280_numu_fhc χ2 = 12.3/6 DoF

36 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Possible improvements Next steps

More datasets: Bubble chamber CCQE data

Why not fitting MA all together? Data are in our database (see introduction)

inclusive cross sections avoid fit results to go in not physical regions

Fit of new models Full Nieves Model - G16_02b ...

Find a way to estimate correlations for MiniBooNE Nuisance parameters

37 / 38 Introduction Genie CC 0π tuning Analysis Conclusion

Conclusions Conclusion

We are renewing Genie new models Easy comparisons with Cross section Data ⇒ Quantitative Deployed in Genie v3 and v4

We have a very powerful fitting machinery Proved to work This is not an exercise

We hope that these tools will improve theory / experiments collaboration

38 / 38 Single datasets

Advertisment

New Position in Liverpool Join a big neutrino group

Position has to be filled in 10 days

Big data science SBND Argon Tune for GENIE

39 / 38 Single datasets

Backup slides

40 / 38 Single datasets

MiniBooNE Single datasets - MiniBooNE

Parameter Miniboone νµ fit MiniBooNE ν¯µ MiniBooNE Global fit 2 MA (GeV/c ) 1.10 ± 0.03 1.25 ± 0.03 1.17 ± 0.02 QEL-CC-XSecScale 1.12 ± 0.02 0.99 ± 0.03 1.05 ± 0.02 RES-CC-XSecScale 0.69 ± 0.06 0.9 ± 0.1 0.68 ± 0.06 MEC-FracCCQE 0.43 ± 0.07 0.63 ± 0.03 0.33 ± 0.08 FSI-PionMFP-Scale 0.95 ± 0.03 1.39 ± 0.04 0.99 ± 0.06 FSI-PionAbs-Scale 1.17 ± 0.07 0.8 ± 0.2 1.08 ± 0.09

2 Fit Results Miniboone νµ fit MiniBooNE ν¯µ fit MiniBooNE Global fitGlobal χ 2 Miniboone νµ χ 121 / 131 153 / 137 124 / 137 2 MiniBooNE ν¯µ χ 60.4 / 78 29 / 72 40.3 / 78 T2K χ2 298 / 67 279 / 67 271 / 67 2 MINERvA νµ χ 11.4 / 8 10.6 / 8 9.17 / 8 2 MINERvA ν¯µ χ 16.3 / 8 11.7 / 8 10.4 / 8 Global dataset χ2 507 / 292 483 / 292 455 / 292

41 / 38 Single datasets

T2K

Single datasets - T2K ND280 νµ 0π

Parameter T2K fit T2K fit - no corr T2K fit with priors 2 MA (GeV/c ) 0.75 ± 0.04 1.03 ± 0.13 QEL-CC-XSecScale 0.90 ± 0.02 1.11 ± 0.04 RES-CC-XSecScale 1.2 ± 0.1 1.500 ± 0.001 MEC-FracCCQE 0.36 ± 0.09 0.3 ± 0.1 FSI-PionMFP-Scale 0.81 ± 0.05 1.1 ± 0.1 FSI-PionAbs-Scale 1.1 ± 0.1 1.54 ± 0.08

Fit Results T2K fit T2K fit - no corr 2 Miniboone νµ χ 1023 / 137 / 137 2 MiniBooNE ν¯µ χ 367 / 78 / 72 T2K χ2 127 / 61 / 61 2 MINERvA νµ χ 26.1 / 8 / 8 2 MINERvA ν¯µ χ 23.5 / 8 / 8 Global dataset χ2 1567 / 292 / 292

42 / 38 Single datasets

MINERvA Single datasets - MINERvA

Parameter MINERvA νµ fit MINERvA ν¯µ MINERvA Global fit 2 MA (GeV/c ) 1.16 ± 0.10 1.2 ± 0.1 1.20 ± 0.08 QEL-CC-XSecScale 0.81 ± 0.04 0.83 ± 0.03 0.84 ± 0.04 RES-CC-XSecScale 1.2 ± 0.2 0.7 ± 0.3 1.1 ± 0.1 MEC-FracCCQE 0.7 ± 0.2 0.07 ± 0.08 0.6 ± 0.1 FSI-PionMFP-Scale 1.3 ± 0.1 0.9 ± 0.3 1.2 ± 0.2 FSI-PionAbs-Scale 0.8 ± 0.2 1.2 ± 0.3 0.8 ± 0.3

Fit Results MINERvA νµ fit MINERvA ν¯µ fit MINERvA Global fit 2 Miniboone νµ χ / 131 / 137 220 / 137 2 MiniBooNE ν¯µ χ / 78 / 72 97.2 / 78 T2K χ2 / 67 / 67 184 / 67 2 MINERvA νµ χ / 2 / 8 6.49 / 8 2 MINERvA ν¯µ χ / 8 / 2 3.26 / 8 Global dataset χ2 / 292 / 292 511 / 292

43 / 38