<<

Charged Current Coherent Production in MINERνA

Aaron Mislivec University of Rochester w/ Aaron Higuera Outline

• Motivation • MINERνA Detector and Kinematics Reconstruction • Event Selection • Background Tuning • Contribution from Diffractive Scattering off Hydrogen • Systematics • Cross Sections

Aaron Mislivec, University of Rochester NuInt14 2 K. HIRAIDE et al. PHYSICAL REVIEW D 78, 112004 (2008)

100 TABLE III. Event selection summary for the MRD-stopped DATA charged current coherent pion sample. CC coherent π Event selection Data MC Coherent % CC resonant π Signal BG Efficiency Other Generated in SciBar fid.vol. 1939 156 766 100% CC QE 50 SciBar-MRD matched 30 337 978 29 359 50.4% MRD-stopped 21 762 715 20 437 36.9% two-track 5939 358 6073 18.5% Entries / 5 degrees Particle ID (" %) 2255 292 2336 15.1% Vertex activityþ cut 887 264 961 13.6% CCQE rejection 682 241 709 12.4% 0 0 20 40 60 80 100 120 140 160 180 Pion track direction cut 425 233 451 12.0% Reconstructed Q2 cut 247 201 228 10.4% ∆θp (degrees)

FIG. 11 (color online). Á for the " % events in the MRD p þ stopped sample after fitting. which the track angle of the pion candidate with respect to the beam direction is less than 90 degrees are selected. Figure 13 shows the reconstructed Q2 distribution for the " % events after the pion track direction cut. Althoughþ a charged current quasielastic interaction is as- DATA 80 sumed, the Q2 of charged current coherent pion events is CC coherent π reconstructed with a resolution of 0:016 GeV=c 2 and a CC resonant π 2 ð Þ 60 shift of 0:024 GeV=c according to the MC simulation. Other Finally,À eventsð withÞ reconstructed Q2 less than CC QE 0:1 GeV=c 2 are selected. The charged current coherent 40 pionð eventÞ selection is summarized in Table III. In the Volume 313, number 1,2 PHYSICS LETTERS B 26 August 1993 signal region, 247 charged current coherent pion candi- Entries / 5 degrees

300 ' '' 'I '~ ' 'I ' ' ''I'~ 300 -I I I I I I I I I I I I I I I I dates are observed, while the expected number of back- 20 250 250 ground events is 228 12. The error comes from the errors B&K Æ oE 200 •Eo200 on the fitting parameters summarized in Table II. The ~b 150 ~-~" 150 0 background in the final sample is dominated by charged % 020406080100120140160180 .-~ 100 13~ 100 Pion track angle (degrees) current resonant pion production. The ‘‘other’’ background 50 Z Need5O for New Data on is comprised of 50% charged current DIS, 32% neutral , i i I i i i i I i i i I I i i i i l i i i i I i i i I I i 0 50 100 150 0 50 100 150 FIG. 12 (color online). Track angle of the pion candidate with current, and 18% #" events. The selection efficiency for Ev [GeV] E ~ [ GeV] respect to the beam direction for the " % events after the þ the signal is estimated to be 10.4%. Fig. 5. Visible cross section (En >/ 5 GeV) for coherent single charged plon production for and antmeutrmocharged induced current quasielastic rejection after fitting. interactions. The predictionsCC of the Rein-Sehgal modelCoherent (full hne) and of the Bel'kov-Kopehovlch model (dashed Pion hne) are Production indicated Phys. Lett. B 313, 267 (1993) Phys. Rev. D 78, 112004 (2008) 500 i i i I i i i I i 'i' ' ' ' i i i i i i i i i , i s i 40

400 150 E SciBooNE o 300 o DATA .?, DATA 2 2 ~ 200 30 CC coherent • penment) CC coherent π .I ~ TI x Aachen ~Padua [1] +Gargamelle[2] π 100 4~"t' " • CHARM.L3].. • SKAT (CC) [4] CC resonant π ./~ ¢, SKAT (NC) [4] • BEBC[7] 100 CC resonant π ,, I , , I,,, I ,O,F~A~-[~],, I, ,qF~/~LI9], I , 20 40 60 80 100 120 140 Other Other Ev [GeV] 20 CC QE CC QE 500 I i I I I I I I ill II I II I lli I I I ill I

400 ~_ 12 -12 + 50 νμ C→μ Cπ 10 Entries / 0.025 (GeV/c)

300 i Entries / 0.025 (GeV/c) ~ : =1.1GeV b 200 J,)~LJT/"1~. ' .L ~dua [1] + Gargamelle [2] 100 • CHARM [3] T 0 i , I i i i I M t , I R M , I r , , I i m r I i i i I i 0 0 20 40 60 80 100 120 140 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 E~ [GeV] Q2 (GeV/c)2 Q2 (GeV/c)2 Fig. 6. Compilation of experiments on coherent single p]on producUon. Shown are the results from both [ 1-4] and charged current [4-9] data, for neutrino and antmeutrmo reduced interactions. The FNAL [8,9 ] values from combined neutrino and antmeutrmo data have been included m the upper dxagram For this experiment theFIG. results for 13 the (color online). Reconstructed Q2 for the " % events FIG. 14 (color online). Reconstructed Q2 for the " % events visibleOlder cross section data were corrected of chargedfor the selecUon ofcurrent En >/ 5 GeV according(CC) to thecoherent Bel'kov-Kopellov~ch pion approach. production Data at higher (Eν > ~10 GeV)þ agrees þ • from other experiments have been scaled, where necessary, to allow comparison The pred]cuons of the Rem-Sehgalin the model MRD stopped sample after the pion track direction cut and in the MRD penetrated sample after the pion track direction cut (full hne)with and ofthe the Bel'kov-Kopeliovlch Rein-Sehgal model model(dashed hne) areprediction mdxcated. after fitting. after fitting.

274 • K2K and SciBooNE data at Eν < 2 GeV is consistent with no CC coherent pion production and places an upper limit on the production rate that is significantly lower than the Rein-Sehgal model prediction 112004-14 • Limitations of the Rein-Sehgal model have been discussed in-depth at NuInt • Constraining CC coherent pion production at 1-5 GeV is needed by oscillation experiments

Aaron Mislivec, University of Rochester NuInt14 3 Enter MINERνA

• We are measuring neutrino and antineutrino CC coherent pion production on Carbon for 1.5 GeV < Eν < 20 GeV • This analysis uses the GENIE v2.6.2 event generator, which uses the Rein-Sehgal model for CC coherent pion     production with mass corrections  

Our signal definition: •    • a positively identified and pion  • a quiet event vertex (i.e. no nuclear break-up)  

2 • low |t| = |(q-pπ) |   • model independent, unambiguous signature of coherent scattering   • MINERνA is the first contemporary experiment measuring |t| event-by-event

Aaron Mislivec, University of Rochester NuInt14 4 The MINERνA Detector

Elevation View

Side HCAL μ Side ECAL

ν-Beam π

O) Active Tracker

0.25t 2 ! From NuMI Region H 2.14 m 3.45 m Hadronic Steel Shield Calorimeter Liquid 8.3 tons total Calorimeter Nuclear Target Target Nuclear Electromagnetic Electromagnetic Helium Pb, Fe, Region (C, FiducialFiducial Region Region Scintillator Veto Wall 15 tons 30 tons (Muon Spectrometer) (Muon Side ECAL 0.6 tons MINOS Near Detector

Side HCAL 116 tons

5 m 2 m

• We analyze events in our fully active central scintillator (C-H) tracker region - fine-grained for measuring μ and π direction

1 • Reconstructing the μ in both MINERνA and MINOS gives a measurement of pμ and muon charge

• The downstream and side calorimeters provide containment of the π for measuring Eπ

2 • MINERνA has full access to the μ and π kinematics for measuring |t| = |(q-pπ) |

Aaron Mislivec, University of Rochester NuInt14 5 νμ CC Coherent Pion Production Candidate in MINERνA

Data Run 2019/5/339/1 Eν = 6.53 GeV Eπ = 2.37 GeV |t| = 0.001 (GeV/c)2

Aaron Mislivec, University of Rochester NuInt14 6 Kinematics Reconstruction

200 mm Vertex Exclusion Region

• We accurately measure pμ for reconstructed in both MINERνA & MINOS

• Since most interact in our detector, Eπ reconstructed as: • total non-muon calorimetric energy > 200 mm from event vertex • +60 MeV estimate of single pion calorimetric energy within 200 mm from event vertex • Excluding the vertex region minimizes sensitivity to mis-modeling vertex activity in background events

• Eν = Eμ + Eπ (assumes zero energy transfer to nucleus) • Assume neutrino direction is parallel to beam axis

2 2 • |t| = |(q - pπ) | = |(pν - pμ - pπ) | Aaron Mislivec, University of Rochester NuInt14 7 Event Selection: CC 2-Particle Sample

• Muon originates in the tracker region • Muon is reconstructed in both MINERνA & MINOS • Muon charge is negative for , positive for antineutrinos • Exactly one reconstructed at the event vertex

Aaron Mislivec, University of Rochester NuInt14 8 Event Selection: Proton Veto - + + - 3 i + A A A + µ + / 3 i + A A A + µ + / ×10 µ ×10 µ 18 MINERiA Preliminary Data MINERiA Preliminary Data POT Normalized 3.5 POT Normalized 16 2.15e+20 POT Coh Pion 1.06e+20 POT Coh Pion Events Events 3 14 Pion Pion 12 Proton 2.5 Proton Other Other 10 2 8 Cuts: 1.5 6 CC 2-Particle Sample 1 4 2 0.5 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Proton Score Proton Score • Events with a reconstructed proton, particularly CCQE, are important backgrounds for the neutrino analysis • Above is the proton likelihood of the reconstructed hadron from fitting the energy deposition along its reconstructed path • To reject events with a reconstructed proton, the neutrino analysis requires the proton score be < 0.35 • The antineutrino analysis does not cut on this variable since events with a reconstructed proton are rejected by cuts on vertex energy and |t|

Aaron Mislivec, University of Rochester NuInt14 9 Event Selection: Vertex Energy

- + + - 3 i + A A A + µ + / 3 i + A A A + µ + / ×10 µ ×10 µ MINERiA Preliminary DATA 1.6 MINERiA Preliminary DATA POT Normalized POT Normalized 6 2.15e+20 POT COH 1.06e+20 POT COH QE 1.4 QE 5 RES W<1.4 1.2 RES W<1.4 1.4 2.0 1 W> 2.0 4 Other Other

Cuts: Events / 10 MeV Events / 10 MeV 0.8 CC 2-Particle Sample 3 Proton Veto (νμ) 0.6 2 0.4 1 0.2 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Vertex Energy (MeV) Vertex Energy (MeV)

• No nuclear break-up occurs in coherent scattering • We require the total energy within a region around the event vertex be consistent with a minimum ionizing muon and a pion

• Selected events: 30 MeV < Vertex Energy < 70 MeV

Aaron Mislivec, University of Rochester NuInt14 10 Event Selection: |t| - + + - iµ + A A A + µ + / iµ + A A A + µ + / 2 2 MINERiA Preliminary DATA MINERiA Preliminary DATA 900 POT Normalized POT Normalized COH 2.15e+20 POT COH 350 1.06e+20 POT 800 QE QE RES W<1.4 300 RES W<1.4 Cuts: 700 1.4 2.0 CC 2-Particle Sample 600 W> 2.0 Other Other Proton Veto (νμ) 500 Sideband 200 Vertex energy Sideband 400 150 Events / 0.025 (GeV/c) Events / 0.025 (GeV/c) 300 100 200 100 50 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reconstructed |t| = (q-p )2 (GeV/c)2 Reconstructed |t| = (q-p )2 (GeV/c)2 / / 2 • |t| = |(q-pπ) | • Selected events: |t| < 0.125 (GeV/c)2 • Sideband for tuning backgrounds: 0.2 (GeV/c)2 < |t| < 0.6 (GeV/c)2

Aaron Mislivec, University of Rochester NuInt14 11 Background Tuning: Neutrino - + - + iµ + A A A + µ + / iµ + A A A + µ + / 900 MINERiA Preliminary DATA 900 MINERiA Preliminary DATA POT Normalized POT Normalized 2.15e+20 POT COH 2.15e+20 POT COH 800 QE 800 QE 700 RES W<1.4 700 RES W<1.4 1.4 2.0 600 W> 2.0 Cuts: Other Other CC 2-Particle Sample Events / 0.2 GeV 500 Events / 0.2 GeV 500 Proton Veto 400 400 Vertex energy 300 Before Tuning 300 After Tuning 0.2 < |t| < 0.6 200 200 100 100 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Reconstructed E/ (GeV) Reconstructed E/ (GeV)

Background Central Value • Background tuning performed after vertex (W in GeV) Scale Factor energy cut to minimize sensitivity to mis- modeling vertex activity QE 0.7±0.3 • Fit normalizations of MC backgrounds to RES W<1.4 0.6±0.3 data in sideband reconstructed Eπ 1.42.0 1.1±0.1

Aaron Mislivec, University of Rochester NuInt14 12 Background Tuning: Antineutrino + - + - iµ + A A A + µ + / iµ + A A A + µ + / MINERiA Preliminary DATA MINERiA Preliminary DATA 250 POT Normalized 250 POT Normalized 1.06e+20 POT COH 1.06e+20 POT COH QE QE RES W<1.4 200 200 RES W<1.4 1.4 2.0 W> 2.0 Other Other Events / 0.2 GeV Cuts: 150 Events / 0.2 GeV 150 CC 2-Particle Sample Vertex energy 100 100 0.2 < |t| < 0.6 Before Tuning After Tuning 50 50

0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Reconstructed E/ (GeV) Reconstructed E/ (GeV) • Background tuning performed after vertex energy cut to minimize sensitivity to mis- Background Central Value modeling vertex activity (W in GeV) Scale Factor QE 1.0 (fixed) • Fit normalizations of MC backgrounds to data in sideband reconstructed Eπ RES W<1.4 0.7±0.1 • The normalization for CCQE is fixed in the 1.42.0 1.9±0.3 contribution to the background

Aaron Mislivec, University of Rochester NuInt14 13 Diffractive Pion Production on Hydrogen

           

     

     

    Coherent Pion Production on Carbon Diffractive Pion Production on Hydrogen     • By number, our fiducial volume targets are ~49% Carbon and ~49% Hydrogen • We therefore expect a non-negligible contribution from diffractive pion production on Hydrogen which is not modeled in GENIE • Due to the mass of the nucleus, ~0 energy is transferred to the nucleus in coherent scattering on Carbon while energy is transferred to the nucleus in diffractive scattering on Hydrogen

2 • We can detect the recoil proton in diffractive events when |t|diffractive = |(q-pπ) | = 2MpTp is sufficiently large

Aaron Mislivec, University of Rochester NuInt14 14 Diffractive Pion Production off Hydrogen 1   MINERiA Preliminary    e-8|t|  0.8 Predicted |t|- dependence of the

  Acceptance 0.6 diffractive cross section   (arbitrary units) 0.4    0.2

0  0 0.05 0.1 0.15 0.2  |t| = |(q - p )2| = 2M T (GeV/c)2 diffractive / p p

 • To estimate our diffractive acceptance, we overlaid a proton onto true signal events and determined the 2 acceptance of our vertex energy cut as a function of |t|diffractive = |(q-pπ) | = 2MpTp • We estimate our integrated relative coherent-to-diffractive acceptance to be ~40% • Per the color dipole model (arXiv:1107.2845), the ratio of the production cross sections for coherent scattering on Carbon and diffractive scattering on Hydrogen is ~2:1 for Q2 = 0.13 (GeV/c)2 and ν = 0.9 GeV • From this ratio and our estimated diffractive acceptance, ~17% of our signal is diffractive • Our |t| reconstruction, which assumes zero energy transfer to the nucleus, should give reasonable reconstructed |t|diffractive for small Tp • The diffractive contribution to our sideband (0.2<|t|<0.6) should be small

Aaron Mislivec, University of Rochester NuInt14 15 Systematics Summary

• Flux - see talk from Debbie Harris • Interaction Model (GENIE) • largest contributions to error from resonance MA and pion FSI • additional error for disagreement between our data and the GENIE prediction in our sideband • MINERνA+MINOS Muon Reconstruction Efficiency • Energy Response - constrained by MINERνA Test Beam • Detector Model - primarily Geant4 systematics • Vertex Energy

Aaron Mislivec, University of Rochester NuInt14 16 Systematics: Sideband Model - + +- +- + - i + A A A + µ + / iµ + A A A + µ ++ // iµ + A A A + µ + / µ 2 µ 2 MINERiA Preliminary MINERMINERiA Preliminary MINERiA Preliminary Data POT Normalized Data 1.8 POTPOT Normalized 1.8 POT Normalized 500 2.15e+20 POT 100 1.06e+202.15e+20 POTPOT 1.06e+20 POT Monte Carlo Sideband Monte Carlo Sideband 1.6 1.6 Non-Coh 80 Non-Coh 400 Data / MC 1.4 Data / MC 1.4 1.2 1.2 60 300 1 1 0.8 0.8 200 40 Events / 5.0 Degrees We apply an Events / 5.0 Degrees 0.6 0.6 additional systematic 100 0.420 0.4 to our selected 0.2 0.2 0 00 0 backgrounds to 0 10 20 30 40 50 60 70 80 90 00 10 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

cover disagreement Reconstructed e/ w/r to Beam (Degrees) ReconstructedReconstructed e/ w/r to Beam (Degrees) Reconstructed e/ w/r to Beam (Degrees) - + + - in our tuned iµ + A A A + µ + / iµ + A A A + µ + / sideband θπ 0.2 Sideband Angle 0.2 Sideband Angle distribution 0.18 0.18 0.16 0.16 0.14 Selected 0.14 Selected 0.12 0.12 0.1 Sample 0.1 Sample 0.08 0.08 0.06 0.06 Fractional Uncertainty Fractional Uncertainty 0.04 0.04 0.02 0.02 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Reco Pion Angle w/r to Beam (Degrees) Reco Pion Angle w/r to Beam (Degrees) Aaron Mislivec, University of Rochester NuInt14 17 Systematics: Energy Response

T977 + MINERvA Preliminary Positive Pions 0.65

0.6

0.55

0.5 Data with Stat. Errors MC with Syst. Errors MINERνA Test Beam: 0.45 • Energy Response / Incoming 0.6 0.8 1 1.2 1.4 1.6 1.8 Pion Total Energy = Available Energy (GeV) a tertiary pion beam with a smaller version of the • T977 + MINERvA Preliminary MINERνA detector in the Fermilab Test Beam Facility Negative Pions • provides a calibration of pion and proton response in 0.65 the MINERνA detector 0.6 • provides an error band (~5%) on the pion and proton response for systematics on MINERνA’s 0.55

detector mass model 0.5 • Data with Stat. Errors MC with Syst. Errors scintillator optical model 0.45

• Energy Response / Incoming 0.6 0.8 1 1.2 1.4 1.6 1.8 Pion Total Energy = Available Energy (GeV) • photomultiplier tube (PMT) model Aaron Mislivec, University of Rochester NuInt14 18 Systematics: Detector Model - + iµ + A A A + µ + /

0.1 Neutron Pathlength Pion Inel. XSec Proton Inel. XSec NuMI Beam Angle GEANT4 simulates particle propagation in 0.08 • Selected MINERνA, which affects our tracking 0.06 Sample efficiency, vertex energy, and energy reconstruction 0.04 Fractional Uncertainty • Use re-weighting to modify 0.02 0 • pion and proton total inelastic cross 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 section ±10% Reco Pion Energy (GeV) + - iµ + A A A + µ + / • neutron path length 0.1 Neutron Pathlength Pion Inel. XSec Proton Inel. XSec NuMI Beam Angle • We also apply an uncertainty on the neutrino 0.08 beam angle since our reconstruction of Selected 2 2 0.06 |t| = |(q - pπ) | = |(pν - pμ - pπ) | assumes the Sample direction of the neutrino is parallel to the 0.04 beam axis Fractional Uncertainty 0.02

0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Reco Pion Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 19 Systematics: Vertex Energy

MINERiA • i Tracker A CCQE MINERiA • i Tracker A CCQE 1100 300 Area normalized Area normalized MINERνA’s CCQE results found an MC with syst. error 1050 MC with syst. error Background excess in vertex energy in data Background 1000 Data Data compared to the GENIE prediction 200 950 Events / MeV Phys. Rev. Lett. 111, 022501 (2013) Events / MeV 900

Phys. Rev. Lett. 111, 022502 (2013) 150 100 100 A fit to this excess prefers the 50 0 0 addition of a final state proton with 0 100 200 300 400 0 100 200 300 KE < 225 MeV to 25% of events with Vertex Energy (MeV) Vertex Energy (MeV)

a target neutron - + + - iµ + A A A + µ + / iµ + A A A + µ + / Vertex Energy Vertex Energy Motivated by these results, we 0.1 0.1

estimated the effect of mis-modeling 0.08 Selected 0.08 Selected vertex activity on our analysis by Sample Sample overlaying a proton with KE < 225 0.06 0.06 MeV onto 25% of our background events with a target neutron 0.04 0.04 Fractional Uncertainty Fractional Uncertainty 0.02 0.02

0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Reco Pion Energy (GeV) Reco Pion Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 20 Reconstructed |t| - + + - iµ + A A A + µ + / iµ + A A A + µ + / 2 900 MINERiA Preliminary 2 350 MINERiA Preliminary POT Normalized Data POT Normalized Data 800 2.15e+20 POT 1.06e+20 POT Monte Carlo 300 Monte Carlo 700 Tuned Bkgd 250 Tuned Bkgd 600 200 Cuts: 500 400 150 CC 2-Particle Sample 300 100 Events / 0.025 (GeV/c) Proton Veto (νμ) 200 Events / 0.025 (GeV/c) Vertex energy 100 50 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 2 We definitely see a Reconstructed |t| = (q-p ) (GeV/c) Reconstructed |t| = (q-p )2 (GeV/c)2 signal above our tuned / / + A A + - + + + - iµ A µ / iµ + A A A + µ + /

background at low |t| 2

120 2 Total Sys. Error Detector Model 50 Total Sys. Error Detector Model Energy Response Flux Energy Response Flux 100 Interaction Model Sideband Model Interaction Model Sideband Model Selected Events: Tracking Eff Vertex Energy Tracking Eff Vertex Energy 40 2 |t| < 0.125 (GeV/c) 80 30 60

20 40

20 10 Unc. Events / 0.025 (GeV/c) Unc. Events / 0.025 (GeV/c) 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 2 2 Reconstructed |t| = (q-p ) (GeV/c) Reconstructed |t| = (q-p )2 (GeV/c)2 / / Aaron Mislivec, University of Rochester NuInt14 21 Selected Events: Eν + - - + i + A A A + µ + / 3 iµ + A A A + µ + / µ ×10 450 MINERiA Preliminary MINERiA Preliminary Data POT Normalized Data POT Normalized 1 2.15e+20 POT 400 1.06e+20 POT Monte Carlo Monte Carlo 350 0.8 Tuned Bkgd Tuned Bkgd 300 0.6 250 Events / 1.0 GeV Events / 1.0 GeV 200 0.4 150

0.2 100 50 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Reconstructed E (GeV) i Reconstructed Ei (GeV) + - - + iµ + A A A + µ + / iµ + A A A + µ + / Total Sys. Error Detector Model Total Sys. Error Detector Model 90 35 Energy Response Flux Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model 80 Tracking Eff Vertex Energy Tracking Eff Vertex Energy 30 70 25 60 50 20 40 15 30 10 Unc. Events / 1.0 (GeV) Unc. Events / 1.0 (GeV) 20 5 10 0 0 0 5 10 15 20 0 5 10 15 20 Reco Neutrino Energy (GeV) Reco Neutrino Energy (GeV) Aaron Mislivec, University of Rochester NuInt14 22 Blah

Calculating the Cross Sections Tuned Reconstructed Unfolding Background Bins

1 1 j Uij(Ndata,j Nbg,j) σi(Eν)= − (1) ΦiT ∆Eν,i ￿ εi True Bin i Flux Efficiency/Acceptance # Targets Bin Width Correction

dσ 1 1 Uij(Ndata,j Nbg,j) = j − (2) dE ΦT ∆E ε ￿ π ￿i π,i ￿ i

Integrated Flux

Aaron Mislivec, University of Rochester NuInt14 23

1 Cross Sections - + -39 + -39 - ×10 iµ + A A A + µ + / ×10 iµ + A A A + µ + / ) 25 MINERiA Preliminary ) 25 MINERiA Preliminary

Inner error bars are 12 12 POT Normalized POT Normalized 2.15e+20 POT 1.06e+20 POT /C /C

systematic errors only 2 2 20 DATA 20 DATA GENIE v2.6.2 GENIE v2.6.2 (cm (cm

Outer error bars are m m systematic + statistical 15 15 errors 10 10 K2K and SciBooNE measurements were 5 5 consistent with no CC 0 0 coherent pion production 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 for Eν < 2 GeV Neutrino Energy (GeV) Neutrino Energy (GeV)

- + + - -39 i + A A A + µ + / -39 i + A A A + µ + / For Eν < 5 GeV, GENIE’s ×10 µ ×10 µ ) )

12 Total Sys. Error Rein-Sehgal model predicts 12 4.5 Total Sys. Error Detector Model Detector Model Energy Response Flux 4.5 Energy Response Flux /C /C 2 a higher production rate 2 4 Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy 4 Tracking Eff Vertex Energy than our data 3.5 (cm (cm 3.5 m m 3 We estimate that ~17% of 3 2.5 2.5 Unc. our signal is diffractive Unc. scattering off Hydrogen 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0 5 10 15 20 0 5 10 15 20 Neutrino Energy (GeV) Neutrino Energy (GeV) Aaron Mislivec, University of Rochester NuInt14 24 Cross Sections - + - -39 + -39 + A A + + ×10 iµ + A A A + µ + / ×10 iµ A µ / ) ) 1.2 1.2 MINERiA Preliminary MINERiA Preliminary 12 12 POT Normalized POT Normalized 2.15e+20 POT 1.06e+20 POT 1 1 DATA DATA GENIE v2.6.2 GENIE v2.6.2 /GeV/C /GeV/C 2 2 0.8 0.8 (cm (cm / / 0.6 0.6 m m d d dE dE 0.4 0.4

0.2 0.2

0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV)

- + + - -39 i + A A A + µ + / -39 iµ + A A A + µ + / 10 µ ×10

× ) ) 0.3

12 Total Sys. Error Detector Model 12 0.25 Total Sys. Error Detector Model Energy Response Flux Energy Response Flux Interaction Model Sideband Model 0.25 Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 0.2 /GeV/C /GeV/C 2 2 0.2 0.15 (cm (cm / / 0.15 m m d d dE 0.1 dE 0.1 Unc. Unc. 0.05 0.05

0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV) Aaron Mislivec, University of Rochester NuInt14 25 Cross Sections - + + -39 i + A A A + µ + / -39 - ×10 µ iµ + A A A + µ + / ) 1 ×10 ) 1 MINERiA Preliminary MINERiA Preliminary 12 POT Normalized 12 POT Normalized 2.15e+20 POT 1.06e+20 POT 0.8 0.8 DATA DATA GENIE v2.6.2 GENIE v2.6.2 0.6

/Degree/C 0.6 /Degree/C 2 2 (cm (cm 0.4 0.4 / / m m e e d d d d 0.2 0.2

0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Pion Angle w/r to Beam (Degees) Pion Angle w/r to Beam (Degees)

- + + -39 i + A A A + µ + / - ×10 µ -39 iµ + A A A + µ + /

) ×10 )

12 Total Sys. Error Detector Model

12 Total Sys. Error Detector Model 0.1 Energy Response Flux Energy Response Flux Interaction Model Sideband Model 0.1 Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 0.08 0.08 /Degree/C /Degree/C 2 2 0.06 0.06 (cm (cm / / m m e e d

d 0.04 0.04 d d

0.02 Unc. 0.02 Unc.

0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 e w/r to Beam (Degrees) e/ w/r to Beam (Degrees) / Aaron Mislivec, University of Rochester NuInt14 26 Conclusions

• Constraining CC coherent pion production at few GeV is needed by oscillation experiments • MINERνA has isolated a coherent-rich sample using an event-by-event measurement of |t| = |(q-p)2| • Disagreement is observed between our data and the prediction by GENIE’s implementation of the Rein- Sehgal model • Need to compare our data with other models • Contribution from diffractive scattering off Hydrogen needs to be considered when interpreting our data - currently estimated to be ~17% of our signal

MINERνA thanks you for your attention

Aaron Mislivec, University of Rochester NuInt14 27 Backup

Aaron Mislivec, University of Rochester NuInt14 28 Selected Sample: Eπ - + + - 3 i + A A A + µ + / i + A A A + µ + / ×10 µ µ MINERiA Preliminary MINERiA Preliminary POT Normalized Data 450 POT Normalized Data 1 2.15e+20 POT 1.06e+20 POT Monte Carlo 400 Monte Carlo 0.8 Tuned Bkgd 350 Tuned Bkgd 300 0.6 250 Events / 0.2 GeV Events / 0.2 GeV 200 0.4 150

0.2 100 50 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Reconstructed E (GeV) / Reconstructed E/ (GeV) - + + - iµ + A A A + µ + / iµ + A A A + µ + /

Total Sys. Error Detector Model Total Sys. Error Detector Model Energy Response Flux 45 Energy Response Flux 100 Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy 40 Tracking Eff Vertex Energy 35 80 30 60 25 20 40 15

Unc. Events / 0.2 (GeV) Unc. Events / 0.2 (GeV) 10 20 5 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Reco Pion Energy (GeV) Reco Pion Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 29 Selected Sample: θπ + A A + - + + + - iµ A µ / iµ + A A A + µ + / 450 MINERiA Preliminary MINERiA Preliminary Data POT Normalized 160 POT Normalized Data 400 2.15e+20 POT 1.06e+20 POT Monte Carlo 350 140 Monte Carlo Tuned Bkgd Tuned Bkgd 300 120 250 100 200 80 150 60 Events / 5.0 Degrees Events / 5.0 Degrees 100 40 50 20 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Reconstructed e w/r to Beam (Degrees) / Reconstructed e/ w/r to Beam (Degrees) - + + A A + + + - iµ + A A A + µ + / iµ A µ / 20 50 Total Sys. Error Detector Model Total Sys. Error Detector Model Energy Response Flux 18 Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model 40 Tracking Eff Vertex Energy 16 Tracking Eff Vertex Energy 14 30 12 10 20 8 6 10 4 Unc. Events / 5.0 (Degrees)

Unc. Events / 5.0 (Degrees) 2 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Reco Pion Angle w/r to Beam (Degrees) Reco Pion Angle w/r to Beam (Degrees)

Aaron Mislivec, University of Rochester NuInt14 30 Background Subtracted: Eν - + + A A + + + - iµ + A A A + µ + / iµ A µ / MINERiA Preliminary 240 MINERiA Preliminary POT Normalized Data POT Normalized Data 500 2.15e+20 POT 220 1.06e+20 POT Monte Carlo 200 Monte Carlo 400 180 160 140 300 120 Events / 1.0 GeV Events / 1.0 GeV 100 200 After Bkgd. Sub. 80 After Bkgd. Sub. 60 100 40 20 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Reconstructed E (GeV) i Reconstructed Ei (GeV) - + + - iµ + A A A + µ + / iµ + A A A + µ + / Total Sys. Error Detector Model 22 Total Sys. Error Detector Model 60 Energy Response Flux Energy Response Flux Interaction Model Sideband Model 20 Interaction Model Sideband Model Tracking Eff Vertex Energy 18 Tracking Eff Vertex Energy 50 16 40 14 12 30 10 8 20 6 Unc. Events / 1.0 (GeV) Unc. Events / 1.0 (GeV) 10 4 2 0 0 0 5 10 15 20 0 5 10 15 20

Reconstructed Ei(GeV) Reconstructed Ei(GeV) Aaron Mislivec, University of Rochester NuInt14 31 Background Subtracted: Eπ - + + A A + + + - iµ + A A A + µ + / iµ A µ / MINERiA Preliminary 220 MINERiA Preliminary POT Normalized Data POT Normalized Data 200 1.06e+20 POT 500 2.15e+20 POT Monte Carlo 180 Monte Carlo 160 400 140 300 120 Events / 0.2 GeV Events / 0.2 GeV 100 80 200 After Bkgd. Sub. After Bkgd. Sub. 60 100 40 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Reconstructed E (GeV) / Reconstructed E/ (GeV) - + + - iµ + A A A + µ + / iµ + A A A + µ + /

Total Sys. Error Detector Model Total Sys. Error Detector Model Energy Response 30 Energy Response 60 Flux Flux Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 50 25

40 20

30 15

20 10 Unc. Events / 0.2 (GeV) Unc. Events / 0.2 (GeV) 10 5

0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Reconstructed E/ (GeV) Reconstructed E/ (GeV)

Aaron Mislivec, University of Rochester NuInt14 32 Background Subtracted: θπ - + + - iµ + A A A + µ + / iµ + A A A + µ + / 120 MINERiA Preliminary MINERiA Preliminary 250 POT Normalized Data POT Normalized Data 2.15e+20 POT 100 1.06e+20 POT Monte Carlo Monte Carlo 200 80

150 60

100 40

After Bkgd. Sub. After Bkgd. Sub. Events / 5.0 Degrees Events / 5.0 Degrees 20 50 0 0 -20 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Reconstructed e/ w/r to Beam (Degrees) Reconstructed e/ w/r to Beam (Degrees) + A A + - + + + - iµ A µ / iµ + A A A + µ + / 40 Total Sys. Error Detector Model Total Sys. Error Detector Model Energy Response Flux 10 35 Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 30 8 25 6 20

15 4

Absolute Uncertainty 10 2 5 Unc. Events / 5.0 (Degrees) 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Reconstructed e w/r to Beam (Degrees) Reconstructed e/ w/r to Beam (Degrees) /

Aaron Mislivec, University of Rochester NuInt14 33 Migration Matrix: Eν

- + + 3 - 3 iµ + A A A + µ + / ×10 iµ + A A A + µ + / ×10 20 20 1.2 18 1.4 18

(GeV) 16 (GeV) 16 1 i i

E 1.2 E 14 14 0.8 12 1 12 10 0.8 10 0.6 8 0.6 8 6 6 0.4 0.4 4 4 0.2 2 0.2 2 0 0 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Reconstructed Ei (GeV) Reconstructed Ei (GeV)

- i + A A A + µ + /+ i + A A A + µ+ + /- 12 µ 12 µ 0 0 0 0 0 0 7 0 0 0 93 0 90 0 0 0 0 0 0 0 0 0 6 94 0 90 0 0 0 0 0 0 1 0 0 23 76 0 80 0 0 0 0 0 0 0 0 0 27 73 0 10 10 80 0 0 0 0 0 0 1 3 14 73 9 0 0 0 0 0 0 0 0 1 10 80 10 0 70 70

True Bins 0 0 0 0 0 0 2 20 58 21 0 0 True Bins 0 0 0 0 0 0 2 22 59 17 0 0 8 8 0 0 0 0 0 0 20 69 10 1 0 0 60 0 0 0 0 0 1 20 66 14 1 0 0 60 0 0 0 0 0 15 77 7 0 0 0 0 50 0 0 0 0 1 17 77 5 0 0 0 0 50 6 6 0 0 0 0 20 68 11 0 0 0 0 0 40 0 0 0 0 20 71 8 0 0 0 0 0 40 0 0 0 10 79 11 1 0 0 0 0 0 0 0 0 11 76 12 1 0 0 0 0 0 4 4 0 0 2 84 14 1 0 0 0 0 0 0 30 0 0 1 85 14 0 0 0 0 0 0 0 30 0 0 74 26 0 0 0 0 0 0 0 0 20 Fraction of Row in Cell 0 0 63 37 0 0 0 0 0 0 0 0 20 Fraction of Row in Cell 2 2 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 8 10 12 0 2 4 6 8 10 12 Reconstructed Bins Reconstructed Bins

Aaron Mislivec, University of Rochester NuInt14 34 Migration Matrix: Eπ

- + - i + A A A + µ + /+ 3 i + A A A + µ + / 3 4.5 µ ×10 4.5 µ ×10 1.4 4 4 1 (GeV) (GeV)

/ 3.5 1.2 / 3.5 E E 0.8 3 1 3 2.5 2.5 0.8 0.6 2 2 0.6 1.5 1.5 0.4 0.4 1 1 0.2 0.5 0.2 0.5 0 0 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Reconstructed E/ (GeV) Reconstructed E/ (GeV)

+ - - + i + A A A + µ + / iµ + A A A + µ + / µ 0 0 0 0 0 0 0 3 4 27 66 70 0 0 0 0 0 2 2 0 6 18 73 70 10 10 0 0 0 0 0 2 2 6 48 35 7 0 0 0 0 0 3 0 6 39 35 16 60 60 0 0 0 0 2 3 16 30 39 9 1 0 0 0 0 0 5 14 24 46 9 2 8 8 True Bins True Bins 0 0 0 0 1 12 31 33 20 2 0 50 0 0 0 1 2 20 26 33 17 1 0 50 0 0 0 1 4 35 41 14 3 1 0 0 0 0 1 9 32 40 14 3 1 0 6 40 6 0 0 2 10 24 49 13 2 1 0 0 0 0 2 11 23 49 12 2 1 0 0 40 0 0 6 26 39 26 1 0 0 0 0 30 0 0 7 22 41 27 2 0 0 0 0 30 4 4 0 1 22 50 23 4 0 0 0 0 0 0 1 22 51 22 4 0 0 0 0 0 20 20 Fraction of Row in Cell 0 16 72 11 1 0 0 0 0 0 0 0 11 76 13 1 0 0 0 0 0 0 Fraction of Row in Cell 2 2 0 71 29 0 0 0 0 0 0 0 0 10 0 66 30 4 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 8 10 0 2 4 6 8 10 Reconstructed Bins Reconstructed Bins

Aaron Mislivec, University of Rochester NuInt14 35 Migration Matrix: θπ

- + + - iµ + A A A + µ + / i + A A A + µ + / 90 90 µ 600 450 80 80 400 70 500 70 350 60 60 400 300 50 50 250 300 40 40 200 30 200 30 150 W/r to Beam (Degrees) W/r to Beam (Degrees) 20 20 100 / / e e 100 10 10 50 0 0 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Reconstructed W/r to Beam (Degrees) Reconstructed e/ W/r to Beam (Degrees) e/

- + + - iµ + A A A + µ + / iµ + A A A + µ + / 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 90 14 0 0 0 0 0 0 0 0 0 52 0 0 0 48 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 5 9 36 51 0 0 0 60 0 0 4 0 0 0 0 3 0 4 7 36 47 0 0 0 12 0 0 0 0 0 1 0 2 0 1 12 78 4 0 0 0 12 0 1 0 0 1 0 1 1 2 4 14 73 5 0 0 0 True Bins True Bins 70 0 0 0 0 1 0 0 0 4 17 65 11 1 0 0 0 50 0 0 0 1 1 1 1 4 2 21 57 13 0 0 0 0 10 0 0 0 0 0 1 2 1 15 58 17 3 0 0 0 0 10 0 0 0 0 0 1 2 0 17 61 14 4 0 0 0 0 60 0 0 1 0 1 1 1 14 64 13 3 2 0 0 0 0 40 0 0 0 0 1 0 2 13 59 19 4 1 0 0 0 0 8 0 0 0 0 1 2 11 64 17 2 1 1 0 0 0 0 8 0 0 0 0 1 2 9 63 18 3 2 1 0 0 0 0 50 0 0 0 0 2 10 67 15 3 1 1 1 0 0 0 0 30 0 0 0 1 2 9 65 19 2 0 0 1 0 0 0 0 40 6 0 0 1 1 9 69 16 2 1 1 1 0 0 0 0 0 6 0 0 0 1 10 65 17 3 1 1 0 0 0 0 0 0 30 0 0 1 11 67 15 2 1 1 0 0 0 0 0 0 0 20 0 1 1 9 68 17 2 1 1 1 0 0 0 0 0 0

4 Fraction of Row in Cell 4 Fraction of Row in Cell 0 1 7 68 20 3 1 0 0 0 0 0 0 0 0 0 0 1 9 70 15 2 2 0 1 1 0 0 0 0 0 0 20 0 5 74 15 3 1 1 0 0 0 0 0 0 0 0 0 10 0 7 69 19 4 1 1 0 0 0 0 0 0 0 0 0 2 0 74 21 2 1 1 0 1 0 0 0 0 0 0 0 0 2 0 79 18 2 1 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Reconstructed Bins Reconstructed Bins

Aaron Mislivec, University of Rochester NuInt14 36 Unfolded: Eν - + + - iµ + A A A + µ + / iµ + A A A + µ + / MINERiA Preliminary 250 MINERiA Preliminary POT Normalized Data POT Normalized Data 500 2.15e+20 POT 1.06e+20 POT Monte Carlo Monte Carlo 200 400 150 300 Events / 1.0 GeV Events / 1.0 GeV 100 200 After Unfolding After Unfolding

100 50

0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Neutrino Energy (GeV) Neutrino Energy (GeV)

- + + - iµ + A A A + µ + / iµ + A A A + µ + /

Total Sys. Error Detector Model 24 Total Sys. Error Detector Model Energy Response Flux 22 Energy Response Flux 60 Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy 20 Tracking Eff Vertex Energy 50 18 16 40 14 12 30 10 8 20

Unc. Events / 1.0 (GeV) Unc. Events / 1.0 (GeV) 6 10 4 2 0 0 0 5 10 15 20 0 5 10 15 20 Neutrino Energy (GeV) Neutrino Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 37 Unfolded: Eπ + - - + i + A A A + µ + / iµ + A A A + µ + / µ MINERiA Preliminary 240 MINERiA Preliminary Data POT Normalized Data POT Normalized 600 2.15e+20 POT 220 1.06e+20 POT Monte Carlo 200 Monte Carlo 500 180 160 400 140 120 Events / 0.2 GeV 300 Events / 0.2 GeV 100 200 After Unfolding 80 After Unfolding 60 100 40 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV) - + + - iµ + A A A + µ + / iµ + A A A + µ + /

Total Sys. Error Detector Model Total Sys. Error Detector Model 80 Energy Response Flux 45 Energy Response Flux Interaction Model Sideband Model 40 Interaction Model Sideband Model 70 Tracking Eff Vertex Energy Tracking Eff Vertex Energy 35 60 30 50 25 40 20 30 15

Unc. Events / 0.2 (GeV) 20 Unc. Events / 0.2 (GeV) 10 10 5 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 38 Unfolded: θπ - i + A A A + µ + /+ + - µ iµ + A A A + µ + / MINERiA Preliminary 120 MINERiA Preliminary POT Normalized Data Data 2.15e+20 POT POT Normalized 250 1.06e+20 POT Monte Carlo 100 Monte Carlo

200 80

150 60

100 40 After Unfolding Events / 5.0 Degrees After Unfolding Events / 5.0 Degrees 20 50 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 e w/r to Beam (Degrees) / e/ w/r to Beam (Degrees) + A A + - + + + - iµ A µ / iµ + A A A + µ + / 35 Total Sys. Error Detector Model 10 Total Sys. Error Detector Model Energy Response Flux Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model 30 Tracking Eff Vertex Energy 8 Tracking Eff Vertex Energy 25 6 20

15 4

10 2 5 Unc. Events / 5.0 (Degrees) Unc. Events / 5.0 (Degrees) 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 e w/r to Beam (Degrees) e/ w/r to Beam (Degrees) /

Aaron Mislivec, University of Rochester NuInt14 39 Efficiency Corrections

- + - + - + iµ + A A A + µ + / iµ + A A A + µ + / iµ + A A A + µ + / 0.7 MINERiA Preliminary 0.7 MINERiA Preliminary 0.7 MINERiA Preliminary

0.6 0.6 0.6

0.5 0.5 0.5

0.4 0.4 0.4

0.3 0.3 0.3 Selection Efficiency Selection Efficiency 0.2 Selection Efficiency 0.2 0.2

0.1 0.1 0.1

0 0 0 0 2 4 6 8 10 12 14 16 18 20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 10 20 30 40 50 60 70 80 90 Neutrino Energy (GeV) Pion Energy (GeV/c) Pion Angle w/r to Beam (Degrees)

+ - + - + - iµ + A A A + µ + / iµ + A A A + µ + / iµ + A A A + µ + / 0.7 MINERiA Preliminary 0.7 MINERiA Preliminary 0.7 MINERiA Preliminary

0.6 0.6 0.6

0.5 0.5 0.5

0.4 0.4 0.4

0.3 0.3 0.3 Selection Efficiency Selection Efficiency 0.2 Selection Efficiency 0.2 0.2

0.1 0.1 0.1

0 0 0 0 2 4 6 8 10 12 14 16 18 20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 10 20 30 40 50 60 70 80 90 Neutrino Energy (GeV) Pion Energy (GeV/c) Pion Angle w/r to Beam (Degrees)

Aaron Mislivec, University of Rochester NuInt14 40 Efficiency Corrected: Eν - + + - 3 i + A A A + µ + / i + A A A + µ + / ×10 µ µ 2.2 MINERiA Preliminary MINERiA Preliminary POT Normalized Data 900 POT Normalized Data 2 2.15e+20 POT 1.06e+20 POT Monte Carlo 800 Monte Carlo 1.8 1.6 700 1.4 600 1.2 500 Events / 1.0 GeV Events / 1.0 GeV 1 400 0.8 After Eff. Corr. 300 After Eff. Corr. 0.6 200 0.4 0.2 100 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Neutrino Energy (GeV) Neutrino Energy (GeV)

- + + - iµ + A A A + µ + / iµ + A A A + µ + / Total Sys. Error Detector Model 90 Total Sys. Error Detector Model 250 Energy Response Flux Energy Response Flux Interaction Model Sideband Model 80 Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 200 70 60 150 50 40 100 30 Unc. Events / 1.0 (GeV) Unc. Events / 1.0 (GeV) 50 20 10 0 0 0 5 10 15 20 0 5 10 15 20 Neutrino Energy (GeV) Neutrino Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 41 Efficiency Corrected: Eπ - + + - 3 i + A A A + µ + / i + A A A + µ + / ×10 µ µ 2.5 MINERiA Preliminary 900 MINERiA Preliminary POT Normalized Data POT Normalized Data 2.15e+20 POT 800 1.06e+20 POT Monte Carlo Monte Carlo 2 700 600 1.5 500 Events / 0.2 GeV Events / 0.2 GeV 400 1 After Eff. Corr. 300 After Eff. Corr.

0.5 200 100 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV) - + + - iµ + A A A + µ + / iµ + A A A + µ + /

Total Sys. Error Detector Model Total Sys. Error Detector Model 300 Energy Response Flux 160 Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model Tracking Eff Vertex Energy Tracking Eff Vertex Energy 250 140 120 200 100 150 80 60 100 Unc. Events / 0.2 (GeV) Unc. Events / 0.2 (GeV) 40 50 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Pion Energy (GeV) Pion Energy (GeV)

Aaron Mislivec, University of Rochester NuInt14 42 Efficiency Corrected: θπ - + + - 3 i + A A A + µ + / i + A A A + µ + / ×10 µ µ 1.6 MINERiA Preliminary MINERiA Preliminary POT Normalized Data POT Normalized Data 2.15e+20 POT 500 1.06e+20 POT 1.4 Monte Carlo Monte Carlo 1.2 400 1 300 0.8 200 0.6

Events / 5.0 Degrees After Eff. Corr. Events / 5.0 Degrees After Eff. Corr. 0.4 100

0.2 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

e/ w/r to Beam (Degrees) e/ w/r to Beam (Degrees) - + + - iµ + A A A + µ + / iµ + A A A + µ + / 120 Total Sys. Error Detector Model Total Sys. Error Detector Model Energy Response Flux 30 Energy Response Flux Interaction Model Sideband Model Interaction Model Sideband Model 100 Tracking Eff Vertex Energy Tracking Eff Vertex Energy 25 80 20 60 15

40 10

20 5 Unc. Events / 5.0 (Degrees) Unc. Events / 5.0 (Degrees) 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

e/ w/r to Beam (Degrees) e/ w/r to Beam (Degrees)

Aaron Mislivec, University of Rochester NuInt14 43