Nova Near Detector: Performance and Physics Hongyue Duyang for the Nova Collaboration

Total Page:16

File Type:pdf, Size:1020Kb

Nova Near Detector: Performance and Physics Hongyue Duyang for the Nova Collaboration NOvA Near Detector: Performance and Physics Hongyue Duyang For the NOvA collaboration 1 Οutline • Introduction to the NOvA near detector. • Rock-muon induced EM showers. • νe-CC inclusive cross-section measurement. • Coherent π0 cross-section measurement. • Neutrino-electron elastic scattering for absolute flux constraint. • Summary 2 Introduction • NOvA is a long-baseline neutrino experiment designed to measure νμ to νe oscillation. (See Adam Aurisano’s talk for the first result!) • The principal task of the NOvA near detector is to constrain systematics for oscillation measurement. • In addition, the NOvA near detector provides an excellent opportunity for the measurement of various neutrino interactions. • Neutrino interactions have their own physics, and are important for oscillation experiments to reduce systematics. • This talk will highlight some measurements using NOvA’s early data: • νe-CC inclusive cross-section measurement. • Coherent π0 cross-section measurement. • Neutrino-electron elastic scattering for absolute flux constraint. 3 The NOνA Near Detector NOνA Near Detector Construction NO�A NO�A Far Detector (Ash River, MN) MINOS Far Detector (Soudan, MN) A broad physics scope • • Detector construction and instrumentation0.3 kton, completed4.2mX4.2mX15.8m, Aug.Using ��→�e , � ͞ �→� ͞ e … ° Determine the � mass hierarchy ° Determine the � octant 2014 • 1 km from source, underground at Fermilab.23 ° Constrain �CP • PVC cells filled with liquid scintillatorUsing ��→�� , � ͞ .�→ � ͞ � … • Neutrinos observed within seconds of turning on! ° Precision measurements of 2 2 sin 2�23 and Dm 32. • Alternating planes of orthogonal (Exclude view. �23=�/4?) ° Over-constrain the atmos. sector Results (four oscillation channels) Also … ° Neutrino cross sections at the NO�A Near Detector ° Sterile neutrinos Bin to bin correlation matrix: ° Supernova neutrinos Fermilab ° Other exotica Ryan Patterson, Caltech • Low-Z, fine-grained (1 plane ~ 0.15X0), highly- active tracking calorimeter, optimized for EM shower reconstruction. Mass weight of detector component: C12 Cl35 H1 Near DetectorTi48 O16 Others 11 0.3 kton Jonathan M. Paley 66.8% 16.4% 10.5% 206 3.3%layers 2.6% 0.4% 4 cm ⨯ 6 cm 4 The measured inclusive cross section from Gargamelle, T2k, and NOvA as shown. There is also shown the predicted cross section for nue on carbon from GENIE. There is large correlation between the energy bins for NOvA results (see Top table). Our detector material is dominant by the carbon, chlorine, and hydrogen. 11/17 NuInt 2015 Xuebing Bu (Fermilab) 28 NuMI off-axis beam NO�A detectors are sited NuMI NuMI Beam Beam 14 mrad off the NuMI The NuMI Beam beam axis With the medium-energy NuMI tune, yields a narrow 2-GeV spectrum at the NO�A detectors ➔ Detectors are installed by being ➔ Detectorsoff beam are installed axis by being off beam axis on axis → Reduces NC and �e CC ➔ Narrow band beam peaked at 2 GeV backgrounds in the ➔ Narrow14 mrad band beam peaked at 2 GeV (NO➔ �NearA) maximum oscillation oscillation analyses ➔ Near ➔maximumReduced oscillation NC background while maintaining high � flux at 2 GeV. ➔ Reduced➔ Electron NC background neutrino flux counts ~1% � of total flux. ➔ Electron neutrino flux counts ~1% of total flux. Ryan Patterson, Caltech 7 Fermilab JETP, August 6, 2015 • Narrow11/17 NuInt 2015band neutrino beam peakXuebing Buat (Fermilab) ~2GeV. 5 11/17 •NuIntDominated 2015 by νμ (94%), withXuebing small Bu (Fermilab) contribution from νe (1%). 5 5 Near Detector: 10 �s of readout during NuMI beam pulse (color ⇒ time of hit)Neutrino Interaction in ND • Introduction to the NOvA near detector. • Rock-muon induced EM showers. • νe-CC inclusive cross-section measurement. • Coherent π0 cross-section measurement. • Neutrino-electron elastic scattering for absolute flux constraint. • Summary Ryan Patterson, Caltech 10µs of readout during16 NuMI beam pulse.Fermilab JETP, August 6, 2015 6 Οutline • Introduction to the NOvA near detector. • Rock-muon induced EM showers. • νe-CC inclusive cross-section measurement. • Coherent π0 cross-section measurement. • Neutrino-electron elastic scattering for absolute flux constraint. • Summary 7 Rock-Muon Induced EM Showers • Rock muons induce EM showers in the detector via bremsstrahlung radiation. • A muon-removal technique is developed to isolate those EM showers. • Provide a data-driven method to Check EM shower modeling and reconstruction for measurements involving EM showers. 8 Rock-Muon Induced EM Showers • Rock muons induced EM showers in the detector via bremsstrahlung radiation. • A muon-removal technique is developed to isolate those EM showers. • Provide a data-driven method to Check EM shower modeling and reconstruction for measurements involving EM showers. 9 ReconstructionEM Shower of shower Angular directions Resolution θshw - θμ (rad) • A “measured” angular resolution in data by comparing the 36 Jonathan M. Paley reconstructed EM shower direction to the muon direction. • The NOvA ND has good angular resolution (~0.02rad) for EM showers. • Important to measurements such as neutrino-electron elastic scattering and coherent π0 cross-section measurement. 10 Οutline • Introduction to the NOvA near detector. • Rock-muon induced EM showers. • νe-CC inclusive cross-section measurement. • Coherent π0 cross-section measurement. • Neutrino-electron elastic scattering for absolute flux constraint. • Summary 11 νe-CC Inclusive Cross-Sectionνe + A CC Interactions Measurement in the NOνA Near Detector NOνA Simulation 10 Full phase-space 1 50 p.o.t.) 8 21 /nucleon) 0.8 • Inclusive cross-section 2 40 - cm measurement: νe + N => Χ + e 6 CC flux -39 30 e 0.6 T2K ν flux ν from µ 10 e /50 MeV/10 • × There are very few electron NEUT νe prediction 2 0 0 ± ( 4 from KL, K , and K 20 GENIE νe prediction 0.4 S σ NEUT average neutrino cross section νe /cm 9 GENIE νe average CC 10 Gargamelle data Fraction of measurements at GeV scale. ν νe 10 2 × 0.2 T2K νe data T2K νµ data flux ( 0 0 e 0 1 2 3 4 5 6 7 8 9 10 ν 2 4 6 8 10 E (GeV) E (GeV) νe PRL 113, 241803 (2014) ν • Very limited world data • Beam electron neutrino interactions are irreducible backgrounds for the electron neutrino appearance analysis.• NOvA has a unique opportunity to make a clean measurement of ν • Measuring the electron neutrino inclusivee CC cross inclusive section, cross in sectionparticular in the 1 – 3 GeV energy region is important• Will restrict for long-baseline to 1-3 GeV range for the time being experiment, like DUNE. 24 Jonathan M. Paley 12 Event display νe-CCfor Inclusive nue candidate Cross-Section in Measurement data 11/17 NuIntThe 2015 signal events areXuebing νe-CC Bu (Fermilab) events with EM showers 32 induced by the electrons in the final state. 13 BDT output distributions BDT output distributions νe-CC Inclusive Cross-Section: Event Selection • Pre-selection cuts on fiducial, containment, shower length and energy, fraction of MIP hits, andLeft EM plot likelihood shows theapplied. shape distributions of BDT output for the nue CC signal and numu CC and NC background. • Build multi-variantLeft plot showsBoost D theecision shape Tree distributions (BDT) algorithm of BDT based output upon for shower the nue CC signal Right plot shows the BDT output distributions after event selection from data, properties to reduce background:and numu CC and NC background. Right plot shows thesignal BDT and output various distributions backgrounds. after event selection from data, • Fraction of MIP hitsAll in eventssub-leading are selected prong with preselection cuts. signal and various backgrounds. • 11/17Fraction NuInt 2015 of energy in ±4cmAll events transverseXuebing are selected Buroad (Fermilab) with preselection cuts. 13 • Maximal fraction of energy in 6-continuous planes •11/17Fraction NuInt 2015 of energy in first 10 planes Xuebing Bu (Fermilab) 13 • Fraction of energy in 2nd, 3rd and 4th plane. νe-CC: Rock Muon EM Showers 20 2.6 × 1020 POT NOνA Preliminary 2.6 × 10 POT NOνA Preliminary 0.3 Brem EM Data Brem EM Data 0.25 0.25 Brem EM MC Brem EM MC 0.2 0.2 νe MC νe MC 0.15 0.15 0.1 0.1 Fraction of Events Fraction of Events 0.05 0.05 0 0 1 1.5 2 0 200 400 600 Shower Energy (GeV) Shower Length (cm) 2.6 × 1020 POT NOνA Preliminary • Use rock muon EM showers to 2000 check EM shower modeling and Data BDT algorithm. 1500 MC 1000 • Good agreement between data Events and MC. 500 • Take the data/MC difference in −0.4 −0.2 0 0.2 0.4 selection efficiency as systematics. 1.5 1 0.5 Data / MC −0.4 −0.2 0 0.2 0.4 15 BDT output νe-CC: Background Normalization 2.6 × 1020 POT NOνA Preliminary 2.6 × 1020 POT NOνA Preliminary 1400 2500 Data Data CC νe 1200 CC νe 2000 ROCK + CC ROCK + CC νe 1000 νe NC NC 1500 800 CC νµ CC νµ Events Events 600 1000 400 500 200 0.4 0.45 0.5 0.55 0.6 0.65 0.7 −0.3 −0.25 −0.2 −0.15 −0.1 1.2 1 1 0.9 0.8 0.8 0.6 0.7 0.6 Data / Bkg 0.4 Data / Bkg 0.4 0.45 0.5 0.55 0.6 0.65 0.7 −0.3 −0.25 −0.2 −0.15 −0.1 Fraction of MIP hits BDT output • Use 2 Sideband samples for background normalization: • Fraction of MIP hits > 0.45. • BDT < -0.1 • MC over predict backgrounds: choose a normalization factor of 0.95±0.2. 16 νe-CC: Flux NOνA Simulation 1 • νe flux comes from muon and kaon decay 0.8 muon • Systematics from beam transport and kaon CC flux e 0.6 hadron production. ν • Use external data (MIPP and NA49) to 0.4 constraint the hadron production uncertainty.
Recommended publications
  • Sensitivity Study and First Prototype Tests for the CHIPS Neutrino
    Sensitivity study and first prototype tests for the CHIPS neutrino detector R&D program Maciej Marek Pfützner University College London Submitted to University College London in fulfilment of the requirements for the award of the degree of Doctor of Philosophy July 20, 2018 1 2 Declaration I, Maciej Marek Pfützner confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Maciej Pfützner 3 4 Abstract CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective detectors for long baseline neutrino oscillation experiments. Water Cherenkov detector modules will be submerged in an existing lake in the path of an accelerator neutrino beam, eliminating the need for expensive excavation. In a staged approach, the first detectors will be deployed in a flooded mine pit in northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. The main physics aim is to measure the CP-violating neutrino mixing phase (δCP). A sensitivity study was performed with the GLoBES package, using results from a dedicated detector simulation and a preliminary reconstruction algorithm. The predicted physics reach of CHIPS-10 and potential bigger modules is presented and compared with currently running experiments and future projects. One of the instruments submerged on board CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef.
    [Show full text]
  • A Mislivec, Minerva Coherent
    Charged Current Coherent Pion Production in MINERνA Aaron Mislivec University of Rochester w/ Aaron Higuera Outline • Motivation • MINERνA Detector and Kinematics Reconstruction • Event Selection • Background Tuning • Contribution from Diffractive Scattering off Hydrogen • Systematics • Cross Sections Aaron Mislivec, University of Rochester NuInt14 2 K. HIRAIDE et al. PHYSICAL REVIEW D 78, 112004 (2008) 100 TABLE III. Event selection summary for the MRD-stopped DATA charged current coherent pion sample. CC coherent π Event selection Data MC Coherent % CC resonant π Signal BG Efficiency Other Generated in SciBar fid.vol. 1939 156 766 100% CC QE 50 SciBar-MRD matched 30 337 978 29 359 50.4% MRD-stopped 21 762 715 20 437 36.9% two-track 5939 358 6073 18.5% Entries / 5 degrees Particle ID (" %) 2255 292 2336 15.1% Vertex activityþ cut 887 264 961 13.6% CCQE rejection 682 241 709 12.4% 0 0 20 40 60 80 100 120 140 160 180 Pion track direction cut 425 233 451 12.0% Reconstructed Q2 cut 247 201 228 10.4% ∆θp (degrees) FIG. 11 (color online). Á for the " % events in the MRD p þ stopped sample after fitting. which the track angle of the pion candidate with respect to the beam direction is less than 90 degrees are selected. Figure 13 shows the reconstructed Q2 distribution for the " % events after the pion track direction cut. Althoughþ a charged current quasielastic interaction is as- DATA 80 sumed, the Q2 of charged current coherent pion events is CC coherent π reconstructed with a resolution of 0:016 GeV=c 2 and a CC resonant π 2 ð Þ 60 shift of 0:024 GeV=c according to the MC simulation.
    [Show full text]
  • Icecube Searches for Neutrinos from Dark Matter Annihilations in the Sun and Cosmic Accelerators
    UNIVERSITE´ DE GENEVE` FACULTE´ DES SCIENCES Section de physique Professeur Teresa Montaruli D´epartement de physique nucl´eaireet corpusculaire IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators. THESE` pr´esent´ee`ala Facult´edes sciences de l'Universit´ede Gen`eve pour obtenir le grade de Docteur `essciences, mention physique par M. Rameez de Kozhikode, Kerala (India) Th`eseN◦ 4923 GENEVE` 2016 i Declaration of Authorship I, Mohamed Rameez, declare that this thesis titled, 'IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualifica- tion at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: 27 April 2016 ii UNIVERSITE´ DE GENEVE` Abstract Section de Physique D´epartement de physique nucl´eaireet corpusculaire Doctor of Philosophy IceCube searches for neutrinos from dark matter annihilations in the Sun and cosmic accelerators.
    [Show full text]
  • The History of Neutrinos, 1930 − 1985
    The History of Neutrinos, 1930 − 1985. What have we Learned About Neutrinos? What have we Learned Using Neutrinos? J. Steinberger Prepared for “25th International Conference On Neutrino Physics and Astrophysics”, Kyoto (Japan), June 2012 1 2 3 4 The detector of the experiment of Conversi, Pancini and Piccioni, 1946, 5 which showed that the mesotron is not the Yukawa particle. Detector with 80 Geiger counters. The muon decay spectrum is continuous. My thesis experiment, under Fermi, which showed that the muon decays into two neutral particles, plus the electron. Fermi, myself and others, in 1954, at a summer school in Varenna, lake Como, a few months before Fermi’s untimely disappearance. 6 Demonstration of the Neutrino In 1956 Cowan and Reines detected antineutrinos from a nuclear reactor, reacting with protons in liquid scintillator which also contained cadmium, observing the positron as well as the scattering of the neutron on cadmium. 7 The Electron and Muon Neutrinos are Different. 1. G. Feinberg, 1958. 2. B. Pontecorvo, 1959. 3. M. Schwartz (T.D. Lee), 1959 4. Higher energy accelerators, Courant, Livingston and Snyder. Pontecorvo 8 9 A C B D Spark chamber and counter arrangement. A are triggering counters, Energy spectra of neutrinos B, C and D are anticoincidence counters from pion and kaon decays. 10 Event with penetrating muon and hadron shower 11 The group of the 2nd neutrino experiment in 1962: J.S., Goulianos, Gaillard, Mistry, Danby, technician whose name I have forgotten, Lederman and Schwartz. 12 Same group, 26 years later, at Nobel ceremony in Stockholm. 13 Discovery of partons, nucleon structure, scaling, in deep inelastic scattering of electrons on protons at SLAC in 1969.
    [Show full text]
  • Measurement of the + ̅ Charged Current Inclusive Cross Section
    Measurement of the �! + �!̅ Charged Current Inclusive Cross Section on Argon in MicroBooNE Krishan Mistry on behalf of the MicroBooNE Collaboration 15 March 2021 New Directions in Neutrino-Nucleus Scattering (NDNN) NuSTEC Workshop ICARUS T600 MicroBooNE SBND Importance of the �!-Ar cross section • MicroBooNE + SBN Program + DUNE ⇥ Employ Liquid Argon Time Projection Chambers (LArTPCs) arXiv:1503.01520 [physics.ins-det] • Primary signal channel for these experiments is �!– Ar CC interactions arXiv:2002.03005 [hep-ex] 15 March 2021 K Mistry 2 Building a Picture of �! Interactions ArgoNeuT is the first A handful of measurements measurement made on on other nuclei in the argon hundred MeV to GeV range ⇥ Sample of 13 selected events Nuclear Physics B 133, 205 – 219 (1978) Phys. Rev. D 102, 011101(R) (2020) ⇥ Gargamelle Phys. Rev. Lett. 113, 241803 (2014) ⇥ Phys. Rev. D 91, 112010 (2015) T2K J. High Energ. Phys. 2020, 114 (2020) ⇥ MINER�A Phys. Rev. Lett. 116, 081802 (2016) !! " !! " Argon Other 15 March 2021 K Mistry 3 What are we measuring? ! /!̅ " # • Total �!+ �!̅ Charged Current (CC) ! ! $ /$ inclusive cross section • Signature: the neutrino event ? contains at least one electron-liKe shower Ar ⇥ No requirements on the presence (or absence) of any additional particle ⇥ Do not differentiate between �! and �!̅ Inclusive channel is the most straightforward channel to compare to predictions 15 March 2021 K Mistry 4 MicroBooNE • Measurement is performed • Features of a LArTPC using the MicroBooNE detector: LArTPC ⇥ Precise calorimetry ⇥ 4�
    [Show full text]
  • Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models
    Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models Kiyoshi Keola Shiraishi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2006 Program Authorized to Offer Degree: Physics University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Kiyoshi Keola Shiraishi and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: R. Jeffrey Wilkes Reading Committee: R. Jeffrey Wilkes Thompson Burnett Ann Nelson Cecilia Lunardini Date: In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.” Signature Date University of Washington Abstract Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models Kiyoshi Keola Shiraishi Chair of the Supervisory Committee: Professor R. Jeffrey Wilkes Physics Current data finds that the atmospheric neutrino anomaly is best explained with ν µ − ντ neutrino oscillations.
    [Show full text]
  • PDF) Submittals Are Preferred) and Information Particle and Astroparticle Physics As Well As Accelerator Physics
    CERNNovember/December 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the November/December 2019 issue of CERN Courier. The Extremely Large Telescope, adorning the cover of this issue, is due to EXTREMELY record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. LARGE TELESCOPE As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy! To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier KATRIN weighs in on neutrinos Maldacena on the gauge–gravity dual FPGAs that speak your language EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING CCNovDec19_Cover_v1.indd 1 29/10/2019 15:41 CERNCOURIER www.
    [Show full text]
  • First MINOS Results from the Numi Beam Nathaniel Tagg, for the MINOS Collaboration Tufts University, 4 Colby Street, Medford, MA, USA 02155 FERMILAB-CONF-06-130-E
    First MINOS Results from the NuMI Beam Nathaniel Tagg, for the MINOS Collaboration Tufts University, 4 Colby Street, Medford, MA, USA 02155 FERMILAB-CONF-06-130-E As of December 2005, the MINOS long-baseline neutrino oscillation experiment collected data with an exposure of 0.93 × 1020 protons on target. Preliminary analysis of these data reveals a result inconsistent with a no- oscillation hypothesis at level of 5.8 sigma. The data are consistent with neutrino oscillations reported by m2 . +0.60 × − 2 θ . +0.12 Super-Kamiokande and K2K, with best fit parameters of ∆ 23 = 3 05−0.55 10 3 and sin 2 23 = 0 88−0.15. 1. Introduction end of the run period in March 2006, the maximum in- tensity delivered to the target was in excess of 25 1012 × The MINOS long-baseline neutrino oscillation ex- protons per pulse, with a maximum target power of periment [1] was designed to accurately measure neu- 250 kW. trino oscillation parameters by looking for νµ disap- pearance. MINOS will improve the measurements of ∆m223 first performed by the Super-Kamiokande 3. The MINOS Detectors [2, 3] and K2K experiments [4]. In addition, MINOS is capable of searching for sub-dominant νµ νe os- The MINOS Near and Far detectors are constructed cillations, can look for CPT-violating modes→ by com- to have nearly identical composition and cross-section. paring νµ toν ¯µ oscillations, and is used to observe The detectors consist of sandwiches of 2.54 cm thick atmospheric neutrinos [5]. steel and 1 cm thick plastic scintillator, hung verti- The MINOS experiment uses a beam of νµ created cally.
    [Show full text]
  • 01Ii Beam Line
    STA N FO RD LIN EA R A C C ELERA TO R C EN TER Fall 2001, Vol. 31, No. 3 CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • Alpha Backgrounds and Their Implications for Neutrinoless Double-Beta Decay Experiments Using Hpge Detectors
    Alpha Backgrounds and Their Implications for Neutrinoless Double-Beta Decay Experiments Using HPGe Detectors Robert A. Johnson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2010 Program Authorized to Offer Degree: Physics University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Robert A. Johnson and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: John F. Wilkerson Reading Committee: Steven R. Elliott Nikolai R. Tolich John F. Wilkerson Date: In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.” Signature Date University of Washington Abstract Alpha Backgrounds and Their Implications for Neutrinoless Double-Beta Decay Experiments Using HPGe Detectors Robert A. Johnson Chair of the Supervisory Committee: Professor John F.
    [Show full text]
  • INO/ICAL/PHY/NOTE/2015-01 Arxiv:1505.07380 [Physics.Ins-Det]
    INO/ICAL/PHY/NOTE/2015-01 ArXiv:1505.07380 [physics.ins-det] Pramana - J Phys (2017) 88 : 79 doi:10.1007/s12043-017-1373-4 Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO) The ICAL Collaboration arXiv:1505.07380v2 [physics.ins-det] 9 May 2017 Physics Potential of ICAL at INO [The ICAL Collaboration] Shakeel Ahmed, M. Sajjad Athar, Rashid Hasan, Mohammad Salim, S. K. Singh Aligarh Muslim University, Aligarh 202001, India S. S. R. Inbanathan The American College, Madurai 625002, India Venktesh Singh, V. S. Subrahmanyam Banaras Hindu University, Varanasi 221005, India Shiba Prasad BeheraHB, Vinay B. Chandratre, Nitali DashHB, Vivek M. DatarVD, V. K. S. KashyapHB, Ajit K. Mohanty, Lalit M. Pant Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India Animesh ChatterjeeAC;HB, Sandhya Choubey, Raj Gandhi, Anushree GhoshAG;HB, Deepak TiwariHB Harish Chandra Research Institute, Jhunsi, Allahabad 211019, India Ali AjmiHB, S. Uma Sankar Indian Institute of Technology Bombay, Powai, Mumbai 400076, India Prafulla Behera, Aleena Chacko, Sadiq Jafer, James Libby, K. RaveendrababuHB, K. R. Rebin Indian Institute of Technology Madras, Chennai 600036, India D. Indumathi, K. MeghnaHB, S. M. LakshmiHB, M. V. N. Murthy, Sumanta PalSP;HB, G. RajasekaranGR, Nita Sinha Institute of Mathematical Sciences, Taramani, Chennai 600113, India Sanjib Kumar Agarwalla, Amina KhatunHB Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India Poonam Mehta Jawaharlal Nehru University, New Delhi 110067, India Vipin Bhatnagar, R. Kanishka, A. Kumar, J. S. Shahi, J. B. Singh Panjab University, Chandigarh 160014, India Monojit GhoshMG, Pomita GhoshalPG, Srubabati Goswami, Chandan GuptaHB, Sushant RautSR Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India Sudeb Bhattacharya, Suvendu Bose, Ambar Ghosal, Abhik JashHB, Kamalesh Kar, Debasish Majumdar, Nayana Majumdar, Supratik Mukhopadhyay, Satyajit Saha Saha Institute of Nuclear Physics, Bidhannagar, Kolkata 700064, India B.
    [Show full text]
  • 48. Neutrino Cross Section Measurements 1 48
    48. Neutrino Cross Section Measurements 1 48. Neutrino Cross Section Measurements Revised October 2013 by G.P. Zeller (Fermilab) Neutrino interaction cross sections are an essential ingredient in all neutrino experiments. Interest in neutrino scattering has recently increased due to the need for such information in the interpretation of neutrino oscillation data. Historically, neutrino scattering results on both charged current (CC) and neutral current (NC) interaction channels have been collected over many decades using a variety of targets, analysis techniques, and detector technologies. With the advent of intense neutrino sources constructed for neutrino oscillation investigations, experiments are now remeasuring these cross sections with a renewed appreciation for nuclear effects† and the importance of improved neutrino flux estimates. This work summarizes accelerator-based neutrino cross section measurements performed in the ∼ 0.1 − 300 GeV range with an emphasis on inclusive, quasi-elastic, and single-pion production processes, areas where we have the most experimental input at present (Table 48.1). For a more comprehensive discussion of neutrino cross sections, including neutrino-electron elastic scattering and lower energy measurements, the reader is directed to a recent review of this subject [1]. Here, we survey existing experimental data on neutrino interactions and do not attempt to provide a census of the associated theoretical calculations, of which there are many. Table 48.1: Summary of modern accelerator-based experiments
    [Show full text]