Exploring the Universe Using Neutrinos a Search for Point Sources in the Southern Hemisphere Using the Icecube Neutrino Observatory

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Universe Using Neutrinos a Search for Point Sources in the Southern Hemisphere Using the Icecube Neutrino Observatory ACTA UNIVERSITATIS UPSALIENSIS Uppsala Dissertations from the Faculty of Science and Technology 117 Exploring the Universe Using Neutrinos A Search for Point Sources in the Southern Hemisphere Using the IceCube Neutrino Observatory Rickard Ström Dissertation presented at Uppsala University to be publicly examined in Ångströmlaboratoriet, Polhemsalen, Lägerhyddsvägen 1, Uppsala, Friday, 18 December 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Lawrence R. Sulak (Boston University, Boston, USA). Abstract Ström, R. 2015. Exploring the Universe Using Neutrinos. A Search for Point Sources in the Southern Hemisphere Using the IceCube Neutrino Observatory. Uppsala Dissertations from the Faculty of Science and Technology 117. 254 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9405-6. Neutrinos are the ideal cosmic messengers, and can be used to explore the most powerful accelerators in the Universe, in particular the mechanisms for producing and accelerating cosmic rays to incredible energies. By studying clustering of neutrino candidate events in the IceCube detector we can discover sites of hadronic acceleration. We present results on searches for point- like sources of astrophysical neutrinos located in the Southern hemisphere, at energies between 100 GeV and a few TeV. The data were collected during the first year of the completed 86- string detector, corresponding to a detector livetime of 329 days. The event selection focuses on identifying events starting inside the instrumented volume, utilizing several advanced veto techniques, successfully reducing the large background of atmospheric muons. An unbinned maximum likelihood method is used to search for clustering of neutrino-like events. We perform a search in the full Southern hemisphere and a dedicated search using a catalog of 96 pre- defined known gamma-ray emitting sources seen in ground-based telescopes. No evidence of neutrino emission from point-like sources is found. The hottest spot is located at R.A. 305.2° and Dec. -8.5°, with a post-trial p-value of 88.1%. The most significant source in the a priori list is QSO 2022-077 with a post-trial p-value of 14.8%. In the absence of evidence for a signal, we calculate upper limits on the flux of muon-neutrinos for a range of spectra. For an unbroken E-2 neutrino spectrum, the observed limits are between 2.8 and 9.4×10-10 TeV cm-2 s-1, while for an E-2 neutrino spectrum with an exponential cut-off at 10 TeV, the observed limits are between 0.6 and 3.6×10-9 TeV cm-2 s-1. Keywords: astroparticle physics, neutrino sources, neutrino telescopes, IceCube Rickard Ström, Department of Physics and Astronomy, High Energy Physics, Box 516, Uppsala University, SE-751 20 Uppsala, Sweden. © Rickard Ström 2015 ISSN 1104-2516 ISBN 978-91-554-9405-6 urn:nbn:se:uu:diva-265522 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265522) “The probability of success is difficult to estimate but if we never search the chance of success is zero.” Cocconi and Morrison [1] Table of Contents Page Acknowledgments .............................................................................................. 9 About this Thesis ............................................................................................. 13 Abbreviations and Acronyms .......................................................................... 17 1 Introduction ................................................................................................ 23 1.1 Physics Motivation ......................................................................... 24 1.2 The Multi-Messenger Approach ................................................... 26 2 The Standard Model .................................................................................. 29 2.1 Matter Particles and Force Carriers .............................................. 30 2.2 Interaction Strengths ...................................................................... 32 2.3 Symmetries ..................................................................................... 33 2.4 The Weak Interaction ..................................................................... 35 2.5 The Higgs Mechanism ................................................................... 37 2.6 Fermion masses .............................................................................. 38 2.7 The Parameters of the Standard Model ........................................ 39 2.8 Beyond the Standard Model .......................................................... 40 3 The Cosmic Ray Puzzle ............................................................................ 47 3.1 Energy Spectrum ............................................................................ 50 3.2 The Origin of High-Energy Cosmic Rays .................................... 53 3.3 Astrophysical Neutrinos ................................................................ 55 3.4 Atmospheric Backgrounds ............................................................ 60 3.5 Acceleration Mechanisms ............................................................. 63 3.6 Potential Acceleration Sites ........................................................... 67 4 Neutrino Detection Principles ................................................................... 75 4.1 Neutrino Cross-Section .................................................................. 76 4.2 Cherenkov Radiation ..................................................................... 78 4.3 Energy Loss Mechanisms .............................................................. 80 4.4 Event Topologies ............................................................................ 82 5 The IceCube Neutrino Observatory .......................................................... 85 5.1 The IceCube In-Ice Detector ......................................................... 88 5.2 Optical Properties of the Ice at the South Pole ............................ 90 5.3 The Digital Optical Module .......................................................... 93 5.4 Data Acquisition System and Triggering ..................................... 96 5.5 Processing and Filtering ................................................................ 97 6 Event Simulation ....................................................................................... 99 6.1 The IceCube Simulation Chain ..................................................... 99 6.2 Neutrino Event Weighting ........................................................... 104 7 Reconstruction Techniques ..................................................................... 107 7.1 Noise Cleaning ............................................................................. 107 7.2 Particle Direction ......................................................................... 108 7.3 Angular Uncertainty .................................................................... 118 7.4 Interaction Vertex ......................................................................... 121 7.5 Energy ........................................................................................... 124 8 Opening Up a Neutrino Window to the Southern Hemisphere ............ 129 8.1 The FSS Filter .............................................................................. 132 9 Point Source Analysis Methods .............................................................. 139 9.1 Hypothesis Testing ....................................................................... 139 9.2 Likelihood and Test Statistic ....................................................... 141 10 A Search for Low-Energy Starting Events from the Southern Hemisphere .............................................................................................. 147 10.1 Analysis Strategy ......................................................................... 149 10.2 Experimental Data ....................................................................... 151 10.3 Simulated Data ............................................................................. 154 10.4 Event Selection ............................................................................. 154 10.5 Event Selection Summary ........................................................... 189 10.6 Likelihood Analysis ..................................................................... 192 10.7 Results ........................................................................................... 201 10.8 Systematic Uncertainties ............................................................. 209 11 Summary and Outlook ............................................................................ 213 Summary in Swedish ..................................................................................... 217 Appendix A: BDT Input Variables ............................................................... 223 Appendix B: Result Tables ............................................................................ 227 References ...................................................................................................... 235 Acknowledgements During my time as a graduate student at Uppsala University I have had the privilege to work with many dedicated, helpful and experienced scientists. We’ve organized meetings and workshops, had lengthy discussions on pecu- liar features of fundamental physics, and had a lot of fun during lunches and fika breaks, discussing everything from foreign and domestic politics to candy
Recommended publications
  • Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos
    Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos Markus Ahlers,1 Jaime Alvarez-Mu~niz,´ 2 Rafael Alves Batista,3 Luis Anchordoqui,4 Carlos A. Arg¨uelles,5 Jos´e Bazo,6 James Beatty,7 Douglas R. Bergman,8 Dave Besson,9, 10 Stijn Buitink,11 Mauricio Bustamante,1, 12, ∗ Olga Botner,13 Anthony M. Brown,14 Washington Carvalho Jr.,15 Pisin Chen,16 Brian A. Clark,17 Amy Connolly,7 Linda Cremonesi,18 Cosmin Deaconu,19 Valentin Decoene,20 Paul de Jong,21, 22 Sijbrand de Jong,23, 22 Peter B. Denton,24, y Krijn De Vries,25 Michele Doro,26 Michael A. DuVernois,27 Ke Fang,28 Christian Glaser,13 Peter Gorham,29 Claire Gu´epin,30 Allan Hallgren,13 Jordan C. Hanson,31 Tim Huege,32, 11 Martin H. Israel,33 Albrecht Karle,27 Spencer R. Klein,34, 35 Kumiko Kotera,20 Ilya Kravchenko,36 John Krizmanic,30, 37 John G. Learned,29 Olivier Martineau-Huynh,38 Peter M´esz´aros,39 Thomas Meures,27 Miguel A. Mostaf´a,39, 40 Katharine Mulrey,11 Kohta Murase,39, 40, 41 Jiwoo Nam,16 Anna Nelles,42, 43 Eric Oberla,44 Foteini Oikonomou,45 Angela V. Olinto,44 Yasar Onel,46 A. Nepomuk Otte,47 Sergio Palomares-Ruiz,48 Alex Pizzuto,27 Steven Prohira,7 Brian Rauch,49 Mary Hall Reno,46 Juan Rojo,50, 51 Andr´esRomero-Wolf,52 Ibrahim Safa,5, 27 Olaf Scholten,53, 25 Frank G. Schr¨oder,54, 32 Wayne Springer,55 Irene Tamborra,1, 12 Charles Timmermans,51, 23 Diego F. Torres,56 Jo~aoR.
    [Show full text]
  • Neutrino Astrophysics
    Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Neutrino Astrophysics Ryan Nichol UK Input to European Strategy Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark discovery • Reactor neutrino theta_13 –1500+ (1995) (2012) • Charmomium (2003) –3000+ citations –1900+ –1400+ • Solar neutrino oscillations • b-quark discovery (1977) • B-Bbar oscillation (1987) (2002) –1900+ –1300+ –3000+ citations • W-discovery (1983) • nu_mu -> nu_e (2011) • Kaon CP violations (1964) –1800+ –1300+ –3000+ citations • Z width (2005) • Accelerator neutrino • Reactor antineutrino –1700+ oscillation (2002) [KamLAND] (2003) • Proton spin crisis (1989) –1100+ –2000+ citations –1700+ • Muon neutrino discovery • Gravitational Waves • LSND anomaly (2001) (1962) (2016) –1700+ –1100+ –2000+ citations • Parity non conservation • DAMA/Libra (2008-) • c-quark discovery (1974) (1957) –1000+ –2000+ citations –1600+ • Pentaquark [LEPS] (2003) • Solar neutrino • LUX Dark Matter (2013) –1000+ [Homestake] (1968-1998) –1500+ • Neutron EDM (2006) !3 –2000+ • g-2 (2006) –1000+ Highly cited papers • Higgs Discovery (2012) • Z discovery (1983) –1500+ – 8000+ citations –2000+ • SN1987a neutrinos (1987) • Atmospheric neutrino • Positron excess –1500+ oscillations (1998) [PAMELA] (2008) • Weak neutral current –5000+ citations –1900+ (1973) • Top quark
    [Show full text]
  • Sensitivity Study and First Prototype Tests for the CHIPS Neutrino
    Sensitivity study and first prototype tests for the CHIPS neutrino detector R&D program Maciej Marek Pfützner University College London Submitted to University College London in fulfilment of the requirements for the award of the degree of Doctor of Philosophy July 20, 2018 1 2 Declaration I, Maciej Marek Pfützner confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Maciej Pfützner 3 4 Abstract CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective detectors for long baseline neutrino oscillation experiments. Water Cherenkov detector modules will be submerged in an existing lake in the path of an accelerator neutrino beam, eliminating the need for expensive excavation. In a staged approach, the first detectors will be deployed in a flooded mine pit in northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. The main physics aim is to measure the CP-violating neutrino mixing phase (δCP). A sensitivity study was performed with the GLoBES package, using results from a dedicated detector simulation and a preliminary reconstruction algorithm. The predicted physics reach of CHIPS-10 and potential bigger modules is presented and compared with currently running experiments and future projects. One of the instruments submerged on board CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef.
    [Show full text]
  • A Mislivec, Minerva Coherent
    Charged Current Coherent Pion Production in MINERνA Aaron Mislivec University of Rochester w/ Aaron Higuera Outline • Motivation • MINERνA Detector and Kinematics Reconstruction • Event Selection • Background Tuning • Contribution from Diffractive Scattering off Hydrogen • Systematics • Cross Sections Aaron Mislivec, University of Rochester NuInt14 2 K. HIRAIDE et al. PHYSICAL REVIEW D 78, 112004 (2008) 100 TABLE III. Event selection summary for the MRD-stopped DATA charged current coherent pion sample. CC coherent π Event selection Data MC Coherent % CC resonant π Signal BG Efficiency Other Generated in SciBar fid.vol. 1939 156 766 100% CC QE 50 SciBar-MRD matched 30 337 978 29 359 50.4% MRD-stopped 21 762 715 20 437 36.9% two-track 5939 358 6073 18.5% Entries / 5 degrees Particle ID (" %) 2255 292 2336 15.1% Vertex activityþ cut 887 264 961 13.6% CCQE rejection 682 241 709 12.4% 0 0 20 40 60 80 100 120 140 160 180 Pion track direction cut 425 233 451 12.0% Reconstructed Q2 cut 247 201 228 10.4% ∆θp (degrees) FIG. 11 (color online). Á for the " % events in the MRD p þ stopped sample after fitting. which the track angle of the pion candidate with respect to the beam direction is less than 90 degrees are selected. Figure 13 shows the reconstructed Q2 distribution for the " % events after the pion track direction cut. Althoughþ a charged current quasielastic interaction is as- DATA 80 sumed, the Q2 of charged current coherent pion events is CC coherent π reconstructed with a resolution of 0:016 GeV=c 2 and a CC resonant π 2 ð Þ 60 shift of 0:024 GeV=c according to the MC simulation.
    [Show full text]
  • The Compact Program Booklet
    - 1 - MONDAY, 5 SEPTEMBER 2011 WELCOME TO 12th International Conference on Topics in Astroparticle and Underground Physics 5 – 9 September 2011, Munich, Germany - 2 - structure of The ConferenCe SUNDAY, 4 SEP 2011 WEDNesDAY, 7 SEP 2011 Page 11 17:00 - 21:00 Registration/Reception 09:00 - 10:45 Plenary: Neutrinos 11:15 - 13:00 Plenary: Neutrinos MONDAY, 5 SEP 2011 Page 3 14:30 - 16:10 DM AM DBD/NM LE 09:00 - 10:10 Plenary: Cosmology 16:50 - 18:30 DM AM NO C 10:10 - 10:45 Plenary: Dark Matter 20:00 - 23:30 Conference Dinner 11:15 - 11:50 Plenary: Dark Matter 11:50 - 12:25 Plenary: Astrophysical Messengers THURSDAY, 8 SEP 2011 Page 14 12:25 - 13:00 Plenary: Underground Physics 09:00 - 10:45 Plenary: Astrophysical Messengers 14:30 - 16:10 DM AM DBD/NM LE 11:15 - 13:00 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 14:30 - 16:10 DM AM DBD/NM GW 16:50 - 18:30 DM LE DBD/NM GW TUesDAY, 6 seP 2011 Page 6 09:00 - 10:50 Plenary: Dark Matter FRIDAY, 9 seP 2011 Page 17 11:15 - 13:00 Plenary: Dark Matter 09:00 - 09:35 Plenary: Underground Physics 14:30 - 16:10 DM AM DBD/NM LE 09:35 - 10:45 Plenary: Astrophysical Messengers 16:50 - 18:30 DM AM NO C 11:15 - 12:25 Plenary: Astrophysical Messengers 18:30 - 20:00 Poster Session 12:25 - 13:00 Concluding Session DM Dark Matter NO Neutrino Oscillations AM Astrophysical Messengers DBD/NM Double Beta Decay, Neutrino Mass C Cosmology LE Low-Energy Neutrinos GW Gravitational Waves - 3 - MONDAY, 5 SEPTEMBER 2011 PLENARY SessION: CosmoloGY I Festsaal 09:00 CMB and Planck Francois Bouchet (IAP Paris)
    [Show full text]
  • Science Case for the Giant Radio Antenna Neutrino Detector
    Science Case for the Giant Radio Antenna Neutrino Detector Kumiko Kotera — Institut d’Astrophysique de Paris, UMR 7095 - CNRS, Université Pierre & Marie Curie, 98 bis boulevard Arago, 75014, Paris, France ; email: [email protected] “The title [of this book] is more of an expression of hope than a de- scription of the book’s contents [...]. As new ideas (theoretical and experimental) are explored, the observational horizon of neutrino as- trophysics may grow and the successor to this book may take on a different character, perhaps in a time as short as one or two decades.” John N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1989 igh-energy (> 1015 eV) neutrino as- progress in the fields of high-energy astro- tronomy will probe the working of physics and astroparticle physics. Addi- Hthe most violent phenomena in the tionally, they should contribute to unveil Universe. When most of the information fundamental neutrino properties. we have on the Universe stems from the observation of light, one essential strategy to undertake is to diversify our messengers. 1 Why neutrinos? The most energetic, mysterious and hardly understood astrophysical sources or events Neutrinos are unique messengers that let (fast-rotating neutron stars, supernova ex- us see deeper in objects, further in dis- plosions and remnants, gamma-ray bursts, tance, and pinpoint the exact location of outflows and flares from active galactic nu- their sources. clei, ...) are expected to be producers Neutrinos can escape much denser as- of high-energy non-thermal hadronic emis- trophysical environments than light, hence sion. Hence they should produce copious they enable us to explore processes in the amounts of high-energy neutrinos.
    [Show full text]
  • The History of Neutrinos, 1930 − 1985
    The History of Neutrinos, 1930 − 1985. What have we Learned About Neutrinos? What have we Learned Using Neutrinos? J. Steinberger Prepared for “25th International Conference On Neutrino Physics and Astrophysics”, Kyoto (Japan), June 2012 1 2 3 4 The detector of the experiment of Conversi, Pancini and Piccioni, 1946, 5 which showed that the mesotron is not the Yukawa particle. Detector with 80 Geiger counters. The muon decay spectrum is continuous. My thesis experiment, under Fermi, which showed that the muon decays into two neutral particles, plus the electron. Fermi, myself and others, in 1954, at a summer school in Varenna, lake Como, a few months before Fermi’s untimely disappearance. 6 Demonstration of the Neutrino In 1956 Cowan and Reines detected antineutrinos from a nuclear reactor, reacting with protons in liquid scintillator which also contained cadmium, observing the positron as well as the scattering of the neutron on cadmium. 7 The Electron and Muon Neutrinos are Different. 1. G. Feinberg, 1958. 2. B. Pontecorvo, 1959. 3. M. Schwartz (T.D. Lee), 1959 4. Higher energy accelerators, Courant, Livingston and Snyder. Pontecorvo 8 9 A C B D Spark chamber and counter arrangement. A are triggering counters, Energy spectra of neutrinos B, C and D are anticoincidence counters from pion and kaon decays. 10 Event with penetrating muon and hadron shower 11 The group of the 2nd neutrino experiment in 1962: J.S., Goulianos, Gaillard, Mistry, Danby, technician whose name I have forgotten, Lederman and Schwartz. 12 Same group, 26 years later, at Nobel ceremony in Stockholm. 13 Discovery of partons, nucleon structure, scaling, in deep inelastic scattering of electrons on protons at SLAC in 1969.
    [Show full text]
  • Pos(ICRC2021)048
    ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Rapporteur ICRC 2021: Neutrinos and Muons PoS(ICRC2021)048 0,1, Anna Nelles ∗ 0DESY, Platanenallee 6, 15738 Zeuthen, Germany 1ECAP, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany E-mail: [email protected] This contribution attempts to summarize the status of the field of neutrinos from the cosmos as presented at the ICRC 2021, the first online-only edition of this conference. This rapporteur report builds on 212 contributions with pre-recorded talks and posters, as well as 11 discussion sessions. Furthermore, many of the session conveners provided valuable input to this summary. 37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany ∗Presenter © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Rapporteur: Neutrinos and Muons Anna Nelles The field of neutrino astronomy already provides exciting results, however,it is still dominated by very low statistics in astrophysical neutrino detections. The most transformative results have been discussed in the multi-messenger context [1] and clearly neutrinos are becoming a target of opportunity for all experiments with a potential sensitivity to them. The neutrino field itself is booming with new ideas for detectors and has reached a maturity in which detailed data analysis and systematic detector calibration are the order of business. To summarize the sentiment: the community is doing their homework to get ready for many more neutrinos, which the broader community is excited about.
    [Show full text]
  • Extracting the Energy-Dependent Neutrino-Nucleon Cross Section Above 10 Tev Using Icecube Showers
    Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers Bustamante, Mauricio; Connolly, Amy Published in: Physical Review Letters DOI: 10.1103/PhysRevLett.122.041101 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Bustamante, M., & Connolly, A. (2019). Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers. Physical Review Letters, 122(4), [041101]. https://doi.org/10.1103/PhysRevLett.122.041101 Download date: 30. sep.. 2021 PHYSICAL REVIEW LETTERS 122, 041101 (2019) Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers † Mauricio Bustamante1,2,3,* and Amy Connolly2,3, 1Niels Bohr International Academy & Discovery Centre, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark 2Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, Ohio 43210, USA 3Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA (Received 11 January 2018; revised manuscript received 17 November 2018; published 28 January 2019) Neutrinos are key to probing the deep structure of matter and the high-energy Universe. Yet, until recently, their interactions had only been measured at laboratory energies up to about 350 GeV. An opportunity to measure their interactions at higher energies opened up with the detection of high-energy neutrinos in IceCube, partially of astrophysical origin. Scattering off matter inside Earth affects the distribution of their arrival directions—from this, we extract the neutrino-nucleon cross section at energies from 18 TeV to 2 PeV, in four energy bins, in spite of uncertainties in the neutrino flux.
    [Show full text]
  • Measurement of the + ̅ Charged Current Inclusive Cross Section
    Measurement of the �! + �!̅ Charged Current Inclusive Cross Section on Argon in MicroBooNE Krishan Mistry on behalf of the MicroBooNE Collaboration 15 March 2021 New Directions in Neutrino-Nucleus Scattering (NDNN) NuSTEC Workshop ICARUS T600 MicroBooNE SBND Importance of the �!-Ar cross section • MicroBooNE + SBN Program + DUNE ⇥ Employ Liquid Argon Time Projection Chambers (LArTPCs) arXiv:1503.01520 [physics.ins-det] • Primary signal channel for these experiments is �!– Ar CC interactions arXiv:2002.03005 [hep-ex] 15 March 2021 K Mistry 2 Building a Picture of �! Interactions ArgoNeuT is the first A handful of measurements measurement made on on other nuclei in the argon hundred MeV to GeV range ⇥ Sample of 13 selected events Nuclear Physics B 133, 205 – 219 (1978) Phys. Rev. D 102, 011101(R) (2020) ⇥ Gargamelle Phys. Rev. Lett. 113, 241803 (2014) ⇥ Phys. Rev. D 91, 112010 (2015) T2K J. High Energ. Phys. 2020, 114 (2020) ⇥ MINER�A Phys. Rev. Lett. 116, 081802 (2016) !! " !! " Argon Other 15 March 2021 K Mistry 3 What are we measuring? ! /!̅ " # • Total �!+ �!̅ Charged Current (CC) ! ! $ /$ inclusive cross section • Signature: the neutrino event ? contains at least one electron-liKe shower Ar ⇥ No requirements on the presence (or absence) of any additional particle ⇥ Do not differentiate between �! and �!̅ Inclusive channel is the most straightforward channel to compare to predictions 15 March 2021 K Mistry 4 MicroBooNE • Measurement is performed • Features of a LArTPC using the MicroBooNE detector: LArTPC ⇥ Precise calorimetry ⇥ 4�
    [Show full text]
  • Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models
    Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models Kiyoshi Keola Shiraishi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2006 Program Authorized to Offer Degree: Physics University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Kiyoshi Keola Shiraishi and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: R. Jeffrey Wilkes Reading Committee: R. Jeffrey Wilkes Thompson Burnett Ann Nelson Cecilia Lunardini Date: In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.” Signature Date University of Washington Abstract Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models Kiyoshi Keola Shiraishi Chair of the Supervisory Committee: Professor R. Jeffrey Wilkes Physics Current data finds that the atmospheric neutrino anomaly is best explained with ν µ − ντ neutrino oscillations.
    [Show full text]
  • PDF) Submittals Are Preferred) and Information Particle and Astroparticle Physics As Well As Accelerator Physics
    CERNNovember/December 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the November/December 2019 issue of CERN Courier. The Extremely Large Telescope, adorning the cover of this issue, is due to EXTREMELY record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. LARGE TELESCOPE As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy! To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier KATRIN weighs in on neutrinos Maldacena on the gauge–gravity dual FPGAs that speak your language EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING CCNovDec19_Cover_v1.indd 1 29/10/2019 15:41 CERNCOURIER www.
    [Show full text]