Jack Steinberger

Total Page:16

File Type:pdf, Size:1020Kb

Jack Steinberger Obituary Jack Steinberger (1921–2020) Particle physicist who shared Nobel for discovering muon neutrinos. hen particle physicist Jack harnessed a new accelerator at the Brookhaven Steinberger began his career in National Laboratory, New York, and built a 1945, scientists knew about only fast-acting detector that made particle tracks a handful of subatomic particles. visible as trails of sparks. It was on a massive Today, dozens are evident, and scale. A 13.5-metre-thick steel shield, made Wtheir basic building blocks are codified in the from armour plates from scrapped warships, standard model of particle physics. Stein- was used to block all particles except neutri- berger, who has died aged 99, contributed nos, and a 10-tonne spark chamber was con- throughout — from discovering particles to structed to spot the ones produced. grouping them. He shared the Nobel Prize Steinberger moved to Europe in 1968 to in Physics in 1988 (with Melvin Schwartz and CERN, the particle-physics laboratory near Leon Lederman) for a 1962 experiment that Geneva, Switzerland. The multiwire chamber, revealed the existence of two distinct types of which had just been invented there, was able an enigmatic particle: the neutrino. to collect data thousands of times faster than Neutrinos barely interact — they can pass a bubble chamber could. Steinberger used it right through Earth. They have no electric to extend his studies of strange particles. In charge and respond to the ‘weak’ nuclear 1983, he led the design and construction of force, which acts within atomic nuclei and a large experiment called ALEPH to exploit governs radioactivity. They were predicted CERN’s Large Electron–Positron collider. In in the 1930s, to account for the unexplained 1989, ALEPH helped to demonstrate that there energy released alongside electrons in radio- can be no more than three types of neutrino active decay. Steinberger and his colleagues — the electron and the muon neutrinos, and a SOPHIA ELIZABETH BENNETT/CERN SOPHIA ELIZABETH showed that there was more than one type of third associated with the tau particle, another neutrino. They found a second, associated with The desire to exploit new facilities and ‘heavy electron’ discovered in 1975. This neatly the muon — a particle similar to the stable elec- techniques was a hallmark of Steinberger’s completed the story that Steinberger had tron but 200 times heavier and with a shorter research. In 1949, he joined the Radiation begun with his PhD thesis. lifetime. Steinberger also helped to pin down Laboratory at the University of California, Steinberger retired from CERN in 1986, but the properties of quarks, the ultimate constit- Berkeley, where he used an innovative accel- continued to work with ALEPH researchers uents of protons and neutrons. erator to study another cosmic-ray particle, until the mid-1990s. He extended his inter- Born into a Jewish family in Germany, Stein- the pion. He showed the existence of the short- ests to astrophysics and climate change, and berger was evacuated soon after the Nazis came lived electrically neutral pion, the lifetime of in 2015 joined other Nobel prizewinners in to power, arriving in the United States in 1934. which he had earlier calculated theoretically. signing the Mainau Declaration, urging gov- His foster parents in Chicago, Illinois, ensured ernments to limit greenhouse-gas emissions. that he received a high-school education and “After losing one bet with Jack Steinberger was admired for his instinct reunited his family there in 1938. Steinberger and prowess as an experimental physicist, his first studied chemistry at the University of Chi- theorist friends about an intellect as a teacher and supervisor, and for cago. He joined the US Army on his graduation aspect of physics, he paid being a great friend. He was not always right — in 1942, less than a year after the United States up with good wine.” after losing one bet with theorist friends about entered the Second World War. He worked an aspect of physics, he paid up with good wine. with physicists at the Massachusetts Institute He had a deep interest in how nature works, and of Technology in Cambridge on the use of radar But he left for Columbia University in New York enjoyed mountaineering and sailing. to improve the accuracy of aircraft bombing. City in 1950, owing in part to his refusal to sign Uninterested in prizes, he often reiterated After the war, Steinberger returned to an anti-communist oath. There, he exploited his belief that “the pretension that some of us the University of Chicago to pursue physics the newly invented bubble chamber — which are better than others [is not] a good thing”. research. He was supervised by Nobel laureate reveals trails of fast-moving particles in liquid He felt he been dealt lucky cards in his life, and Enrico Fermi, who had demonstrated the first propane or hydrogen — to make discoveries expressed his deep gratitude to the Chicago nuclear chain reaction. Fermi, who had also about the plethora of new particles that were family who gave him opportunities as a child. worked on the theory of the neutrino and being unearthed. These included ‘strange’ In his words: “You have only one life: whatever coined its name, pointed him to a puzzle con- particles, so called because they decay more crops up, crops up.” cerning the decay of the muon, which had been slowly than expected. found in cosmic rays in 1936. The particle broke It was at Columbia that Steinberger and Christine Sutton is a science writer in down into an electron and missing energy. his colleagues conducted their Nobel-prize- Oxfordshire, UK. She is a former researcher in Steinberger attributed the energy to not one winning experiment. Steinberger’s former particle physics and was editor of the CERN but two neutrinos, a hypothesis he confirmed student Schwartz worked out how to make Courier from 2003 to 2015. experimentally in 1948. a beam of high-energy neutrinos. The team e-mail: [email protected] 194 | Nature | Vol 589 | 14 January 2021 ©2021 Spri nger Nature Li mited. All rights reserved. .
Recommended publications
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • The Standard Model
    The Standard Model by Christine Sutton In May 1983, the central detector of the UA1 experiment at CERN's proton-antiproton collider showed the tell-tale signature of the long-awaited Z particle as it decays into an electron-positron pair (arrowed). As the electrically neutral carrier of the weak force, the Z° plays a vital role in the Standard Model. The initial evidence from Fermilab (see previous article) for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. Model encompasses all the elemen­ their interactions emerge. Instead it is In this specially commissioned tary particles we now know and three an amalgam of the best theories we overview, physics writer Christine of the fundamental forces. The basic have, which we can bolt together Sutton explains the Standard building blocks are two sets or because they have enough in com­ Model. "families" or "matter particles" - the mon to suggest an underlying unity, quarks and the leptons (see page 5). although due to our ignorance the These particles interact with each joins still clearly show. t is nearly 100 years since the other through the exchange of force The structure as a whole rests on a I discovery of the first subatomic carriers or "messengers".
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Download This Article in PDF Format
    The Second Lepton Family Klaus Winter, CERN The Nobel Prize for Physics for 1988 was awarded to L. Lederman, M. Schwartz and J. Steinberger for work on neutrinos in the early 1960s. In a letter [1] addressed to the "dear radioactive ladies and gentlemen", writ­ ten in December 1930, Wolfgang Pauli proposed, as a "desperate remedy" to save the principle of conservation of energy in beta-decay, the idea of the neutrino, a neutral particle of spin 1/2 and with a mass not larger than 0.01 proton mass. "The continuous beta-spectrum [2] would then become understandable by the assumption that in beta-decay a neutrino is emitted together with the electron, in such a way that the sum of the energies of the neutrino and electron is constant." Pauli did not specify at that time Fig. 1 — A recent photograph taken at CERN of Leon Lederman (left), whether the neutrino was to be ejected Jack Steinberger (centre) and Melvin Schwartz. or created. In his famous paper "An attempt of a theory of beta-decay" [3] the muon not decay into e + at the rate ween 1 and 2 GeV should be achievable. E. Fermi used the neutrino concept of predicted if such a non-locality exis­ Would these synchrotrons though, deli­ Pauli together with the concept of the ted ? ". On this view the muon would vir­ ver enough neutrinos? According to nucleon of Heisenberg. He assumed tually dissociate into W + v, the charged their specifications they should accele­ that in beta-decay a pair comprising an W would radiate a and W + v would rate 1011 protons per second, an unpre­ electron and a neutrino is created, analo­ recombine to an electron.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Melvin Schwartz 1932-2006
    MELVIN SCHWARTZ 1932-2006 A Biographical Memoir by N. P. SAMIOS AND P. YAMIN © 2012 The National Academy of Sciences Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MELVIN SCHWARTZ Courtesy of Brookhaven National Laboratories. November 2, 1932–August 28, 2006 BY N. P. SAMIOS AND P. YAMIN MEL SCHWARTZ DIED ON August 28, 2006, in Twin Falls, Idaho. He was born on 1 November 2, 1932, in New York City. He grew up in the Great Depression, but with a sense of optimism and desire to use his mind for the betterment of human- kind. He entered the Bronx High School of Science in the fall of 1945. It was there that his interest in physics began and that he recognized the importance of interactions with peers in determining his sense of direction in life. One of his classmates and future colleagues recalled that “even then” he wanted a Nobel Prize. Mel noted: My interest in physics began at the age of 12 when I entered the Bronx High School of Science. The four years I spent there were certainly among the most exciting and stimulating in my life, mostly because of the interaction with the other students of similar background, interest, and ability. MELVIN SCHWARTZ MELVIN On Sunday afternoons he attended a school run by the secular and Zionist Yiddish and many others. As Mel commented, “This faculty [was] at this time unmatched by any in the world, largely Nationaler Arbeter Farband (Jewish National Workers Alliance).
    [Show full text]
  • Dzhelepov Laboratory of Nuclear Problems
    Dzhelepov Laboratory of Nuclear Problems Dmitry V.Naumov Presented by O.Smirnov Dubna JINR New elements 102, {103, 104, 105(Db), 107}, 114, 115, 116, 117, 118 are synthesized Hypothesis of neutrino oscillations (1957г.) New particles: anti-sigma- minus hyperon And many other discoveries JINR Employed ~ 5000: 1200 - scientists, 2000 - engineers 7 labs. Each lab is as a big research institute 18 member-states and 6 associated members 1500 scientific publications Collaboration with 700 scientific centers and universities in 64 countries Expected budget in 2017-2023 1, 472 billion USD History ● May, 7 1946. First discussion of «construction of a power cyclotron» at special committee of the government ● 18 August 1946. Soviet government approved the proposal of Academician Igor Kurchatov to construct in USSR „the installation M” for fundamental studies in nuclear physics. ● 14 December 1949. The 480 MeV proton synchrocyclotron started operation at the Hydrotechnical Laboratory in Dubna, the most powerful accelerator in the world at that time. ● 26 March 1956. Laboratory of Nuclear Problems of JINR has been founded. M.G.Meshcheryakov Synchrocyclotron 680 MeV (1953) Discoveries Half of discoveries (37) in physics recorded in Soviet Union belongs to JINR 15 of these belongs to LNP Nowadays DLNP researchers are also awarded for important discoveries. Discoveries → New Technologies→ Discoveries LNP a laboratory with largest diversity → origin of most of laboratories in JINR Institute of Nuclear Problems (now DLNP) + Electrophysical laboratory (now
    [Show full text]
  • Its Selflessness,Friendliness, Statesmanship, Helped to Establish
    Leonard I. Schiff died on January 19, 1971 in the midst of a full life, which was unusual for its selflessness, friendliness, statesmanship, and remarkable scientific productivity. He was a teacherand scholar of extraordinary breadth. In his memory and to affirm the high standards in lecturing and research that he so greatly helped to establish, it is most fitting to bring to Stanford a diverse group of outstanding physicists. The Physics Department is establishing a memorial fund, which will be used to support an annual Distinguished Lectureship for physicists of great distinction who will be invited to give a memorial lecture open to the public. Ii is hoped that sufficient funds will be raised to enable the Distinguished Lecturer on occasion to remain in the Department for an extensive stay so that he can interact with students and faculty. Contributions and pledges to the Leonard I. Schiff Memorial Fund should be mailed to the Departmentof Physics, Stanford University, California 94305. Felix Bloch David Ritson Marvin Chodorow Arthur Schawlow William Fairbank Melvin Schwartz Alexander Fetter Alan Schwettman Stanley Hanna Dirk Walecka Robert Hofstadter Stanley Wojcicki William Little Mason Yearian Walter Meyerhof A Distinguished Lectureship in memory of Leonard I. Schiff Professor of Physics Stanford University DistinguishedLectures in memory An invitation to attend the of Leonard I. Schiff: 1976DistinguishedLectures inmemoryof 1972 "HadronStructure and High Energy Collisions" LEONARD I. SCHIFF by Chen Ning Yang Professor of Physics Stanford University 1973 "The Approachto Thermal Equilibrium and Other Steady States" by Willis EugeneLamb, Jr. 1974 "The Evolution of a Nuclear Reaction" by Herman Feshbach 1975 "The World as Quarks, Leptons and Bosons" by Murray Gell-Mann Leonard I.
    [Show full text]
  • The Challenge of Neutrinos by Christine Sutton
    The challenge of neutrinos by Christine Sutton Neutrino pioneers - left to right, Paul Dirac, Wolfgang Pauli., Rudolf Peierls. (Photo MP Niels Bohr Library) Earlier this year, a team of physicists working at Los Alamos claimed a possible sighting of neutrino oscillations (June, page 13). However even before the claim appeared in the scientific literature, newspaper reports had leaked the possible findings and their implications. Detecting particles which can pass unhindered through the Earth provides the ultimate physics challenge. Neutrinos have always captivated public imagination and make compelling reading. In the wake of the latest neutrino episode, Oxford physi­ cist and science writer Christine Sutton looks back on the short but volatile history of the neutrino and its attendant publicity. strangers to controversy, for they beta-decay electrons varies continu­ With the availability of high were in a sense born amidst it, and ously up to a maximum, with peaks energy neutrino beams in the as recent work on neutrino oscilla­ ("lines") at only a few energies. And 1970s, physicists eagerly tions demonstrates they continue to he was able to explain how the scoured each new batch of data fuel debate. This is of course largely photographic technique could "fake" for signs of exciting new physics. to do with the fact that neutrinos have lines through its great sensitivity to But few initial 'sightings' proved no electric charge and experience small changes in intensity. to be of substance. One of the only the weak nuclear force, making The First World War interrupted major problems faced by such them supremely difficult to detect.
    [Show full text]
  • People and Things
    People and things Leon Van Hove - 65 in February Planck Institute for Physics and eminent particle theorist at the Astrophysics. Van Hove's eventful Stanford Linear Accelerator Centre five-year mandate as Research Di­ until 1977, Berman receives the rector General saw the first fruits award 'for his pioneering and crea­ of experiments at the then new tive contributions to the application SPS proton synchrotron, the monu­ of scientific methods in the areas mental decision to go for the pro- of heat and light transfers in win­ ton-antiproton collider, which was dow materials and in the conver­ to bring unprecedented honours to sion of electricity to visible light; CERN, the careful grooming of the and for his contributions to the proposal for the LEP electron-posi­ translation of these insights to the tron collider and the start of prepa­ development of practical, economi­ rations for its experimental pro­ cally viable products with the po­ gramme. tential to save significant amounts Not covered by the speakers but of energy by reducing losses in no less important for that have windows and lighting'. been his widespread interests away from the front line of re­ The Prix Paul Doistau/Emile Blutet search, including his role in organiz­ of the Institut de France, Academie ing the joint CERN/European Sou­ des Sciences, goes to Jean-Marc thern Observatory Symposia on Gaillard, currently continuing an Astronomy, Cosmology and Funda­ important role in the UA2 experi­ Leon Van Hove 65 mental Physics, his work in pan-Eu­ ment at CERN's proton-antiproton ropean research committees, and collider.
    [Show full text]