Thirty Years of Erice on the Brane1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classical Strings and Membranes in the Ads/CFT Correspondence
Classical Strings and Membranes in the AdS/CFT Correspondence GEORGIOS LINARDOPOULOS Faculty of Physics, Department of Nuclear and Particle Physics National and Kapodistrian University of Athens and Institute of Nuclear and Particle Physics National Center for Scientific Research "Demokritos" Dissertation submitted for the Degree of Doctor of Philosophy at the National and Kapodistrian University of Athens June 2015 Doctoral Committee Supervisor Emmanuel Floratos Professor Emer., N.K.U.A. Co-Supervisor Minos Axenides Res. Director, N.C.S.R., "Demokritos" Supervising Committee Member Nikolaos Tetradis Professor, N.K.U.A. Thesis Defense Committee Ioannis Bakas Professor, N.T.U.A. Georgios Diamandis Assoc. Professor, N.K.U.A. Athanasios Lahanas Professor Emer., N.K.U.A. Konstantinos Sfetsos Professor, N.K.U.A. i This thesis is dedicated to my parents iii Acknowledgements This doctoral dissertation is based on the research that took place during the years 2012–2015 at the Institute of Nuclear & Particle Physics of the National Center for Sci- entific Research "Demokritos" and the Department of Nuclear & Particle Physics at the Physics Faculty of the National and Kapodistrian University of Athens. I had the privilege to have professors Emmanuel Floratos (principal supervisor), Mi- nos Axenides (co-supervisor) and Nikolaos Tetradis as the 3-member doctoral committee that supervised my PhD. I would like to thank them for the fruitful cooperation we had, their help and their guidance. I feel deeply grateful to my teacher Emmanuel Floratos for everything that he has taught me. It is extremely difficult for me to imagine a better and kinder supervisor. I thank him for his advices, his generosity and his love. -
Band Spectrum Is D-Brane
Prog. Theor. Exp. Phys. 2016, 013B04 (26 pages) DOI: 10.1093/ptep/ptv181 Band spectrum is D-brane Koji Hashimoto1,∗ and Taro Kimura2,∗ 1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan 2Department of Physics, Keio University, Kanagawa 223-8521, Japan ∗E-mail: [email protected], [email protected] Received October 19, 2015; Revised November 13, 2015; Accepted November 29, 2015; Published January 24 , 2016 Downloaded from ............................................................................... We show that band spectrum of topological insulators can be identified as the shape of D-branes in string theory. The identification is based on a relation between the Berry connection associated with the band structure and the Atiyah–Drinfeld–Hitchin–Manin/Nahm construction of solitons http://ptep.oxfordjournals.org/ whose geometric realization is available with D-branes. We also show that chiral and helical edge states are identified as D-branes representing a noncommutative monopole. ............................................................................... Subject Index B23, B35 1. Introduction at CERN - European Organization for Nuclear Research on July 8, 2016 Topological insulators and superconductors are one of the most interesting materials in which theo- retical and experimental progress have been intertwined each other. In particular, the classification of topological phases [1,2] provided concrete and rigorous argument on stability and the possibility of topological insulators and superconductors. The key to finding the topological materials is their electron band structure. The existence of gapless edge states appearing at spatial boundaries of the material signals the topological property. Identification of possible electron band structures is directly related to the topological nature of topological insulators. It is important, among many possible appli- cations of topological insulators, to gain insight into what kind of electron band structure is possible for topological insulators with fixed topological charges. -
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
Introductory Lectures on Quantum Field Theory
Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties. -
The Standard Model
The Standard Model by Christine Sutton In May 1983, the central detector of the UA1 experiment at CERN's proton-antiproton collider showed the tell-tale signature of the long-awaited Z particle as it decays into an electron-positron pair (arrowed). As the electrically neutral carrier of the weak force, the Z° plays a vital role in the Standard Model. The initial evidence from Fermilab (see previous article) for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. Model encompasses all the elemen their interactions emerge. Instead it is In this specially commissioned tary particles we now know and three an amalgam of the best theories we overview, physics writer Christine of the fundamental forces. The basic have, which we can bolt together Sutton explains the Standard building blocks are two sets or because they have enough in com Model. "families" or "matter particles" - the mon to suggest an underlying unity, quarks and the leptons (see page 5). although due to our ignorance the These particles interact with each joins still clearly show. t is nearly 100 years since the other through the exchange of force The structure as a whole rests on a I discovery of the first subatomic carriers or "messengers". -
Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively. -
Two-Dimensional Instantons with Bosonization and Physics of Adjoint QCD2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Preprint ITEP–TH–21/96 Two-Dimensional Instantons with Bosonization and Physics of Adjoint QCD2. A.V. Smilga ITEP, B. Cheremushkinskaya 25, Moscow 117259, Russia Abstract We evaluate partition functions ZI in topologically nontrivial (instanton) gauge sectors in the bosonized version of the Schwinger model and in a gauged WZNW model corresponding to QCD2 with adjoint fermions. We show that the bosonized model is equivalent to the fermion model only if a particular form of the WZNW action with gauge-invariant integrand is chosen. For the exact correspondence, it is necessary to 2 integrate over the ways the gauge group SU(N)/ZN is embedded into the full O(N −1) group for the bosonized matter field. For even N, one should also take into account the 2 n contributions of both disconnected components in O(N − 1). In that case, ZI ∝ m 0 for small fermion masses where 2n0 coincides with the number of fermion zero modes in n a particular instanton background. The Taylor expansion of ZI /m 0 in mass involves only even powers of m as it should. The physics of adjoint QCD2 is discussed. We argue that, for odd N, the discrete chiral symmetry Z2 ⊗Z2 present in the action is broken spontaneously down to Z2 and the fermion condensate < λλ¯ >0 is formed. The system undergoes a first order phase transition at Tc = 0 so that the condensate is zero at an arbitrary small temperature. -
Five-Branes in Heterotic Brane-World Theories
SUSX-TH/01-037 HUB-EP-01/34 hep-th/0109173 Five-Branes in Heterotic Brane-World Theories Matthias Br¨andle1∗ and Andr´eLukas2§ 1Institut f¨ur Physik, Humboldt Universit¨at Invalidenstraße 110, 10115 Berlin, Germany 2Centre for Theoretical Physics, University of Sussex Falmer, Brighton BN1 9QJ, UK Abstract The effective action for five-dimensional heterotic M-theory in the presence of five-branes is systemat- ically derived from Hoˇrava-Witten theory coupled to an M5-brane world-volume theory. This leads to a 1 five-dimensional N = 1 gauged supergravity theory on S /Z2 coupled to four-dimensional N = 1 theories residing on the two orbifold fixed planes and an additional bulk three-brane. We analyse the properties of this action, particularly the four-dimensional effective theory associated with the domain-wall vacuum state. arXiv:hep-th/0109173v2 8 Oct 2001 The moduli K¨ahler potential and the gauge-kinetic functions are determined along with the explicit relations between four-dimensional superfields and five-dimensional component fields. ∗email: [email protected] §email: [email protected] 1 Introduction A large class of attractive five-dimensional brane-world models can be constructed by reducing Hoˇrava-Witten theory [1, 2, 3] on Calabi-Yau three-folds. This procedure has been first carried out in Ref. [4, 5, 6] and it leads 1 to gauged five-dimensional N = 1 supergravity on the orbifold S /Z2 coupled to N = 1 gauge and gauge matter multiplets located on the two four-dimensional orbifold fixed planes. It has been shown [7]–[13] that a phenomeno- logically interesting particle spectrum on the orbifold planes can be obtained by appropriate compactifications. -
Flux Tubes, Domain Walls and Orientifold Planar Equivalence
Flux tubes, domain walls and orientifold planar equivalence Agostino Patella CERN GGI, 5 May 2011 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 1 / 19 Introduction Orientifold planar equivalence Orientifold planar equivalence OrQCD 2 SU(N) gauge theory (λ = g N fixed) with Nf Dirac fermions in the antisymmetric representation is equivalent in the large-N limit and in a common sector to AdQCD 2 SU(N) gauge theory (λ = g N fixed) with Nf Majorana fermions in the adjoint representation if and only if C-symmetry is not spontaneously broken. Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 2 / 19 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x lim WOr(J) = lim WAd(J) N→∞ N→∞ Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· -
6D Fractional Quantum Hall Effect
Published for SISSA by Springer Received: March 21, 2018 Accepted: May 7, 2018 Published: May 18, 2018 6D fractional quantum Hall effect JHEP05(2018)120 Jonathan J. Heckmana and Luigi Tizzanob aDepartment of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. bDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden E-mail: [email protected], [email protected] Abstract: We present a 6D generalization of the fractional quantum Hall effect involv- ing membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D su- perconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Com- pactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersym- metric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10+2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing. -
Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor. -
Dirac Equation for Strings in Minkowski Space-Time and Then Study the Radial Vibrations of the String
Dirac equation for strings Maciej Trzetrzelewski ∗ M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza, St. 11, 30-348 Krak´ow, Poland Abstract Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator. 1 Introduction In 1962 Dirac considered the possibility that leptons may be described arXiv:1302.5907v3 [hep-th] 14 Feb 2018 by extended objects of spherical topology [1, 2]. In this way one could understand the muon as an excitation of the ground state of the membrane - the electron. Anticipating Nambu [3] and Goto [4] by almost a decade he introduced what is now known as a generalization of the Nambu-Goto action to the case of membranes. Using Bohr- Sommerfeld approximation for the Hamiltonian corresponding to the radial mode, one can then show [1] that the mass of the first excitation is about 53me where me is the mass of the electron. This is about a quarter of the observed mass of the muon. In fact, when instead of ∗e-mail: [email protected] 1 the Bohr-Sommerfeld approximation one uses, more precise, numeri- cal methods one finds that the correct value of the first excitation is about 43me [5, 6]. Therefore Dirac’s model ”explains” 1/5th of the actual value of the muon mass.