D-Brane Primer

Total Page:16

File Type:pdf, Size:1020Kb

D-Brane Primer D–Brane Primer Clifford V. Johnson Department of Mathematical Sciences Science Laboratories, South Road Durham DH1 3LE England, U.K. [email protected] Following is a collection of lecture notes on D–branes, which may be used by the reader as preparation for applications to modern research applications such as: the AdS/CFT and other gauge theory/geometry correspondences, Matrix The- ory and stringy non–commutative geometry, etc. In attempting to be reasonably self–contained, the notes start from classical point–particles and develop the sub- ject logically (but selectively) through classical strings, quantisation, D–branes, supergravity, superstrings, string duality, including many detailed applications. Selected focus topics feature D–branes as probes of both spacetime and gauge geometry, highlighting the role of world–volume curvature and gauge couplings, with some non–Abelian cases. Other advanced topics which are discussed are the (presently) novel tools of research such as fractional branes, the enhan¸con mecha- nism, D(ielectric)–branes and the emergence of the fuzzy/non–commutative sphere. (This is an expanded writeup of lectures given at ICTP, TASI, and BUSSTEPP.) Contents 1 Opening Remarks 4 2 String Worldsheet Perspective, Mostly 7 arXiv:hep-th/0007170v3 24 Aug 2000 2.1 ClassicalPointParticles . 7 2.2 ClassicalBosonicStrings. 9 2.3 QuantisedBosonicStrings . 23 2.4 Chan-PatonFactors . .. .. .. .. .. .. .. .. .. 33 2.5 The Closed String Partition Function . 34 2.6 UnorientedStrings .. .. .. .. .. .. .. .. .. .. 39 2.7 StringsinCurvedBackgrounds . 43 3 Target Spacetime Perspective, Mostly 47 3.1 T–DualityforClosedStrings . 47 3.2 TheCirclePartitionFunction . 51 3.3 Self–Duality and Enhanced Gauge Symmetry . 52 1 3.4 T–dualityinBackgroundFields . 54 3.5 AnotherSpecialRadius: Bosonisation . 55 3.6 StringTheoryonanOrbifold . 58 3.7 T–DualityforOpenStrings: D–branes . 61 3.8 D–Brane Dynamics: Collective Co¨ords and Gauge Theory . .. 63 3.9 T–DualityandOrientifolds. 67 3.10 TheD–BraneTension . 70 3.11 TheOrientifoldTension . 75 4 Worldvolume Actions I: Dirac–Born–Infeld 77 4.1 TiltedD–Branes .......................... 78 4.2 TheDirac–Born–InfeldAction . 79 4.3 TheActionofT–Duality. 81 4.4 Non–AbelianExtensions . 81 4.5 Yang–MillsTheory ......................... 82 4.6 BIons, BPS Saturation and Fundamental Strings . 83 5 Superstrings and D–Branes 85 5.1 OpenSuperstrings:FirstLook . 85 5.2 ClosedSuperstrings: TypeII . 90 5.3 Open Superstrings: Second Look — Type I from Type IIB . 93 5.4 The10DimensionalSupergravities . 95 5.5 The K3 Manifold from a Superstring Orbifold . 97 5.6 T–DualityofTypeIISuperstrings . 104 5.7 T–DualityofTypeISuperstrings . 105 5.8 D–BranesasBPSSolitons. 107 5.9 TheD–BraneChargeandTension . 108 5.10 DiracChargeQuantisation . 111 6 Worldvolume Actions II: Curvature Couplings 112 6.1 Tilted D–BranesandBraneswithin Branes . 112 6.2 Branes Within Branes: Anomalous Gauge Couplings . 113 6.3 Branes Within Branes: Anomalous “Curvature” Couplings . 114 6.4 FurtherNon–AbelianExtensions . 116 6.5 EvenMoreCurvatureCouplings . 116 7 The Dp–Dp′ System 118 7.1 TheBPSBound .......................... 121 7.2 FDBoundStates.......................... 122 7.3 TheThree–StringJunction . 124 7.4 0–p BoundStates.......................... 126 2 8 D–Branes, Strong Coupling, and String Duality 129 8.1 D1–BraneCollectiveDynamics . 129 8.2 TypeIIB/TypeIIBDuality . 130 8.3 TypeI/Heterotic . .. .. .. .. .. .. .. .. .. .. 131 8.4 TypeIIA/M–Theory . 133 8.5 E8 E8 HeteroticString/M–TheoryonI . 137 8.6 U–Duality..............................× 138 8.7 U–DualityandBoundStates . 139 9 D–Branes and Geometry I 140 9.1 D–BranesasaProbeofALESpaces . 140 9.2 Fractional D–Branesand Wrapped D–Branes . 147 9.3 Wrapped, Fractional and Stretched Branes. 149 9.4 D–BranesasInstantons . 154 9.5 SeeingtheInstantonwithaProbe . 155 9.6 D–BranesasMonopoles . 159 10 D–Branes and Geometry II 165 10.1 TheGeometryproducedbyD–Branes . 165 10.2 Probing D–Branes’ Geometry with D–Branes: p with Dp .... 169 10.3 TheMetriconModuliSpace . 171 10.4 Probing D–Branes’ Geometry with D–Branes: p with D(p 4). 172 10.5 D2–branes and 6–branes: Kaluza–Klein Monopoles and M–Theory173− 10.6 TheMetriconModuliSpace . 175 10.7 When Supergravity Lies: Repulson Vs. Enhan¸con . 178 10.8 TheMetriconModuliSpace . 183 11 D–Branes and Geometry III: Non–Commutativity 186 11.1 OpenStringswithaBackgroundB–Field . 186 11.2 Non–Commutative Geometry and D–branes . 189 11.3 Yang–Mills Geometry I: D–branes and the Fuzzy Sphere . 191 11.4 Yang–Mills Geometry II: Enhan¸cons and Monopoles . 198 12 Closing Remarks 201 A Collection of (Hopefully) Useful Formulae 202 B List of Inserts 207 3 1 Opening Remarks These lecture notes are supposed to represent, at least in part, the introductory lectures on D–branes which I have given at a few schools of one sort or another. At some point last year, while preparing to write some lecture notes in a publishable form, it occurred to me that nobody really wanted another set of introductory “D–notes”, (as I like to call them). After all, there have been many excellent ones, dating as far back as 1996, not to mention at least two excellent text books. 1,2 Another problem which occurs is that well–meaning organisers want me to give introductory lectures on D–branes, and assume that the audience is going to “pick up” string theory along the way during the lectures, but still seem quite keen that I get to the “cool stuff” —and usually in four or five lectures. Not being able to bear the thought that I might be losing some of my audience, I thought I’d write some notes for myself which try to take the “informed beginner” from the very start (classical point particles), all the way to the modern applications (AdS/CFT, building a crystal set, whatever), but making sure to stop to smell the flowers along the way. It’ll be a bit more than four lectures, unfortunately, but one should be able to pick and choose from the material. This clearly calls for something somewhere between a serious text (for which there is no need just yet) and another set of short lectures, and here they are. I was hoping for them to be at least in part a sort of useful toolbox, and not just a tour of what’s happened or happening. So as a result it reaches much further back than other D–notes, and also necessarily a bit further forward, so as to make contact with (and serve as a launching pad for) the other lecturers’ material at the school. Due to the remarkable activity in the field, there is not a complete list of every paper written on each topic. I am trying instead to supply a collection of notes that can be worked through as preparatory material, so I list some of the papers I found useful to this task, with an occasional partial attempt at historical context. In terms of the later choice of topics, the notes hopefully fill in some of the holes that other lecture notes on D–branes have left. There is a rather detailed table of contents for aid in searching for topics, and a list of some of the useful formulae that I (for one) like to have to hand. (It’s probably best just to tear those off and throw the rest away.) There are lots of figures and (hopefully) helpful insert boxes to help the reader, especially in the earlier parts. I should mention that I think of this as a natural offspring of the 1996 project with Joe Polchinski and Shyamoli Chaudhuri, 3 and have inevitably borrowed many bits straight from there, and also from Joe’s excellent TASI 4 notes from the same year. 4 Those form a sort of core which I have chipped away at, twisted, stretched, embellished, and any other verb you can think of except “improved”, simply because those lecture notes were trying to do something quite different and still serve their purpose very well. Perhaps in conflict with some students’ memory of the actual lectures, the reader will not find any Star Wars references or jokes scattered within. This is partly because I ran out of good Episode names, but mostly because I actually saw last year’s film. Quite seriously, I hope that the reader can use this collection of notes as a means of pulling together lots of concepts that are in and around string theory in a way that prepares them for actually doing research in this wonderful and exciting subject. Since I wrote no major problems to be done along with the material, let me end with a few suggestions for some daily calisthenic exercises, if you will, of a type which I have heard that all of the top researchers in the field employ on a regular basis. They are listed on the next page. They should be done first thing in the morning, or at least about the same time each day. As experience is gained, you will find it fulfilling to make up some of your own. I hope that you enjoy the notes. Look out for a fully hyperlinked web version. —cvj 5 Daily Calisthenic Exercises a Wind an F–string around as large a circle as you can manage (or have • room for in your office). Tip: If it is an open string, make sure that you firmly fix the ends on a handy D–brane before letting go, or you’ll risk getting a nasty cut as it snaps back. Stretch a D–string between two parallel D–branes. In the old days, we • used to do this with F–strings, but that is now considered to be well beneath most young researchers’ abilities. Do not be tempted to do this at strong coupling; all benefits of the exercise will be lost!. Try lifting a Coulomb branch from time to time, but be careful! This • is one of the more advanced operations, and you should lift steadily to avoid any long term back pain.
Recommended publications
  • M2-Branes Ending on M5-Branes
    M2-branes ending on M5-branes Vasilis Niarchos Crete Center for Theoretical Physics, University of Crete 7th Crete Regional Meeting on String Theory, 27/06/2013 based on recent work with K. Siampos 1302.0854, ``The black M2-M5 ring intersection spins’‘ Proceedings Corfu Summer School, 2012 1206.2935, ``Entropy of the self-dual string soliton’’, JHEP 1207 (2012) 134 1205.1535, ``M2-M5 blackfold funnels’’, JHEP 1206 (2012) 175 and older work with R. Emparan, T. Harmark and N. A. Obers ➣ blackfold theory 1106.4428, ``Blackfolds in Supergravity and String Theory’’, JHEP 1108 (2011) 154 0912.2352, ``New Horizons for Black Holes and Branes’’, JHEP 1004 (2010) 046 0910.1601, ``Essentials of Blackfold Dynamics’’, JHEP 1003 (2010) 063 0902.0427, ``World-Volume Effective Theory for Higher-Dimensional Black Holes’’, PRL 102 (2009)191301 0708.2181, ``The Phase Structure of Higher-Dimensional Black Rings and Black Holes’‘ + M.J. Rodriguez JHEP 0710 (2007) 110 2 Important lessons about the fundamentals of string/M-theory (and QFT) are obtained by studying the low-energy theories on D-branes and M-branes. Most notably in M-theory, recent progress has clarified the low-energy QFT on N M2-brane and the N3/2 dof that it exhibits. Bagger-Lambert ’06, Gustavsson ’07, ABJM ’08 Drukker-Marino-Putrov ’10 Our understanding of the M5-brane theory is more rudimentary, but efforts to identify analogous properties, e.g. the N3 scaling of the massless dof, is underway. Douglas ’10 Lambert,Papageorgakis,Schmidt-Sommerfeld ’10 Hosomichi-Seong-Terashima ’12 Kim-Kim ’12 Kallen-Minahan-Nedelin-Zabzine ’12 ..
    [Show full text]
  • Band Spectrum Is D-Brane
    Prog. Theor. Exp. Phys. 2016, 013B04 (26 pages) DOI: 10.1093/ptep/ptv181 Band spectrum is D-brane Koji Hashimoto1,∗ and Taro Kimura2,∗ 1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan 2Department of Physics, Keio University, Kanagawa 223-8521, Japan ∗E-mail: [email protected], [email protected] Received October 19, 2015; Revised November 13, 2015; Accepted November 29, 2015; Published January 24 , 2016 Downloaded from ............................................................................... We show that band spectrum of topological insulators can be identified as the shape of D-branes in string theory. The identification is based on a relation between the Berry connection associated with the band structure and the Atiyah–Drinfeld–Hitchin–Manin/Nahm construction of solitons http://ptep.oxfordjournals.org/ whose geometric realization is available with D-branes. We also show that chiral and helical edge states are identified as D-branes representing a noncommutative monopole. ............................................................................... Subject Index B23, B35 1. Introduction at CERN - European Organization for Nuclear Research on July 8, 2016 Topological insulators and superconductors are one of the most interesting materials in which theo- retical and experimental progress have been intertwined each other. In particular, the classification of topological phases [1,2] provided concrete and rigorous argument on stability and the possibility of topological insulators and superconductors. The key to finding the topological materials is their electron band structure. The existence of gapless edge states appearing at spatial boundaries of the material signals the topological property. Identification of possible electron band structures is directly related to the topological nature of topological insulators. It is important, among many possible appli- cations of topological insulators, to gain insight into what kind of electron band structure is possible for topological insulators with fixed topological charges.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • A Space-Time Orbifold: a Toy Model for a Cosmological Singularity
    hep-th/0202187 UPR-981-T, HIP-2002-07/TH A Space-Time Orbifold: A Toy Model for a Cosmological Singularity Vijay Balasubramanian,1 ∗ S. F. Hassan,2† Esko Keski-Vakkuri,2‡ and Asad Naqvi1§ 1David Rittenhouse Laboratories, University of Pennsylvania Philadelphia, PA 19104, U.S.A. 2Helsinki Institute of Physics, P.O.Box 64, FIN-00014 University of Helsinki, Finland Abstract We explore bosonic strings and Type II superstrings in the simplest time dependent backgrounds, namely orbifolds of Minkowski space by time reversal and some spatial reflections. We show that there are no negative norm physi- cal excitations. However, the contributions of negative norm virtual states to quantum loops do not cancel, showing that a ghost-free gauge cannot be chosen. The spectrum includes a twisted sector, with strings confined to a “conical” sin- gularity which is localized in time. Since these localized strings are not visible to asymptotic observers, interesting issues arise regarding unitarity of the S- matrix for scattering of propagating states. The partition function of our model is modular invariant, and for the superstring, the zero momentum dilaton tad- pole vanishes. Many of the issues we study will be generic to time-dependent arXiv:hep-th/0202187v2 19 Apr 2002 cosmological backgrounds with singularities localized in time, and we derive some general lessons about quantizing strings on such spaces. 1 Introduction Time-dependent space-times are difficult to study, both classically and quantum me- chanically. For example, non-static solutions are harder to find in General Relativity, while the notion of a particle is difficult to define clearly in field theory on time- dependent backgrounds.
    [Show full text]
  • Deformations of G2-Structures, String Dualities and Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected]
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons, and the Quantum Physics Commons Recommended Citation Barbosa, Rodrigo De Menezes, "Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles" (2019). Publicly Accessible Penn Dissertations. 3279. https://repository.upenn.edu/edissertations/3279 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3279 For more information, please contact [email protected]. Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Abstract We study M-theory compactifications on G2-orbifolds and their resolutions given by total spaces of coassociative ALE-fibrations over a compact flat Riemannian 3-manifold Q. The afl tness condition allows an explicit description of the deformation space of closed G2-structures, and hence also the moduli space of supersymmetric vacua: it is modeled by flat sections of a bundle of Brieskorn-Grothendieck resolutions over Q. Moreover, when instanton corrections are neglected, we obtain an explicit description of the moduli space for the dual type IIA string compactification. The two moduli spaces are shown to be isomorphic for an important example involving A1-singularities, and the result is conjectured to hold in generality. We also discuss an interpretation of the IIA moduli space in terms of "flat Higgs bundles" on Q and explain how it suggests a new approach to SYZ mirror symmetry, while also providing a description of G2-structures in terms of B-branes.
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Jhep05(2019)105
    Published for SISSA by Springer Received: March 21, 2019 Accepted: May 7, 2019 Published: May 20, 2019 Modular symmetries and the swampland conjectures JHEP05(2019)105 E. Gonzalo,a;b L.E. Ib´a~neza;b and A.M. Urangaa aInstituto de F´ısica Te´orica IFT-UAM/CSIC, C/ Nicol´as Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain bDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract: Recent string theory tests of swampland ideas like the distance or the dS conjectures have been performed at weak coupling. Testing these ideas beyond the weak coupling regime remains challenging. We propose to exploit the modular symmetries of the moduli effective action to check swampland constraints beyond perturbation theory. As an example we study the case of heterotic 4d N = 1 compactifications, whose non-perturbative effective action is known to be invariant under modular symmetries acting on the K¨ahler and complex structure moduli, in particular SL(2; Z) T-dualities (or subgroups thereof) for 4d heterotic or orbifold compactifications. Remarkably, in models with non-perturbative superpotentials, the corresponding duality invariant potentials diverge at points at infinite distance in moduli space. The divergence relates to towers of states becoming light, in agreement with the distance conjecture. We discuss specific examples of this behavior based on gaugino condensation in heterotic orbifolds. We show that these examples are dual to compactifications of type I' or Horava-Witten theory, in which the SL(2; Z) acts on the complex structure of an underlying 2-torus, and the tower of light states correspond to D0-branes or M-theory KK modes.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • Two-Dimensional Instantons with Bosonization and Physics of Adjoint QCD2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Preprint ITEP–TH–21/96 Two-Dimensional Instantons with Bosonization and Physics of Adjoint QCD2. A.V. Smilga ITEP, B. Cheremushkinskaya 25, Moscow 117259, Russia Abstract We evaluate partition functions ZI in topologically nontrivial (instanton) gauge sectors in the bosonized version of the Schwinger model and in a gauged WZNW model corresponding to QCD2 with adjoint fermions. We show that the bosonized model is equivalent to the fermion model only if a particular form of the WZNW action with gauge-invariant integrand is chosen. For the exact correspondence, it is necessary to 2 integrate over the ways the gauge group SU(N)/ZN is embedded into the full O(N −1) group for the bosonized matter field. For even N, one should also take into account the 2 n contributions of both disconnected components in O(N − 1). In that case, ZI ∝ m 0 for small fermion masses where 2n0 coincides with the number of fermion zero modes in n a particular instanton background. The Taylor expansion of ZI /m 0 in mass involves only even powers of m as it should. The physics of adjoint QCD2 is discussed. We argue that, for odd N, the discrete chiral symmetry Z2 ⊗Z2 present in the action is broken spontaneously down to Z2 and the fermion condensate < λλ¯ >0 is formed. The system undergoes a first order phase transition at Tc = 0 so that the condensate is zero at an arbitrary small temperature.
    [Show full text]
  • Arxiv:Hep-Th/9404101V3 21 Nov 1995
    hep-th/9404101 April 1994 Chern-Simons Gauge Theory on Orbifolds: Open Strings from Three Dimensions ⋆ Petr Horavaˇ ∗ Enrico Fermi Institute University of Chicago 5640 South Ellis Avenue Chicago IL 60637, USA ABSTRACT Chern-Simons gauge theory is formulated on three dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known arXiv:hep-th/9404101v3 21 Nov 1995 to be related to 2D CFT on closed string surfaces; here I show that the theory on orbifolds is related to 2D CFT of unoriented closed and open string models, i.e. to worldsheet orb- ifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories. E-mail address: [email protected] ⋆∗ Address after September 1, 1994: Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544. 1. Introduction Since the first appearance of the notion of “orbifolds” in Thurston’s 1977 lectures on three dimensional topology [1], orbifolds have become very appealing objects for physicists.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • The Fuzzball Proposal for Black Holes: an Elementary Review
    hep-th/0502050 The fuzzball proposal for black holes: an elementary review1 Samir D. Mathur Department of Physics, The Ohio State University, Columbus, OH 43210, USA [email protected] Abstract We give an elementary review of black holes in string theory. We discuss BPS holes, the microscopic computation of entropy and the ‘fuzzball’ picture of the arXiv:hep-th/0502050v1 3 Feb 2005 black hole interior suggested by microstates of the 2-charge system. 1Lecture given at the RTN workshop ‘The quantum structure of space-time and the geometric nature of fundamental interactions’, in Crete, Greece (September 2004). 1 Introduction The quantum theory of black holes presents many paradoxes. It is vital to ask how these paradoxes are to be resolved, for the answers will likely lead to deep changes in our understanding of quantum gravity, spacetime and matter. Bekenstein [1] argued that black holes should be attributed an entropy A S = (1.1) Bek 4G where A is the area of the horizon and G is the Newton constant of gravitation. (We have chosen units to set c = ~ = 1.) This entropy must be attributed to the hole if we are to prevent a violation of the second law of thermodynamics. We can throw a box of gas with entropy ∆S into a black hole, and see it vanish into the central singularity. This would seem to decrease the entropy of the Universe, but we note that the area of the horizon increases as a result of the energy added by the box. It turns out that if we assign (1.1) as the entropy of the hole then the total entropy is nondecreasing dS dS Bek + matter 0 (1.2) dt dt ≥ This would seem to be a good resolution of the entropy problem, but it leads to another problem.
    [Show full text]