An Introduction to Orbifolds

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Orbifolds An introduction to orbifolds Joan Porti UAB Subdivide and Tile: Triangulating spaces for understanding the world Lorentz Center November 2009 An introduction to orbifolds – p.1/20 Motivation • Γ < Isom(Rn) or Hn discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation). • If Γ has no fixed points ⇒ Γ\Rn is a manifold. • If Γ has fixed points ⇒ Γ\Rn is an orbifold. An introduction to orbifolds – p.2/20 Motivation • Γ < Isom(Rn) or Hn discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation). • If Γ has no fixed points ⇒ Γ\Rn is a manifold. • If Γ has fixed points ⇒ Γ\Rn is an orbifold. ··· (there are other notions of orbifold in algebraic geometry, string theory or using grupoids) An introduction to orbifolds – p.2/20 Examples: tessellations of Euclidean plane Γ= h(x, y) → (x + 1, y), (x, y) → (x, y + 1)i =∼ Z2 Γ\R2 =∼ T 2 = S1 × S1 An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) 2 2 An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) 2 2 2 2 2 2 2 2 2 2 2 2 An introduction to orbifolds – p.3/20 Example: tessellations of hyperbolic plane Rotations of angle π, π/2 and π/3 around vertices (order 2, 4, and 6) An introduction to orbifolds – p.4/20 Example: tessellations of hyperbolic plane Rotations of angle π, π/2 and π/3 around vertices (order 2, 4, and 6) 2 4 2 6 An introduction to orbifolds – p.4/20 Definition Informal Definition • An orbifold O is a metrizable topological space equipped with an atlas modelled on Rn/Γ, Γ < O(n) finite, with some compatibility condition. We keep track of the local action of Γ < O(n). An introduction to orbifolds – p.5/20 Definition Informal Definition • An orbifold O is a metrizable topological space equipped with an atlas modelled on Rn/Γ, Γ < O(n) finite, with some compatibility condition. We keep track of the local action of Γ < O(n). • Singular (or branching) locus: Σ= points modelled on F ix(Γ)/Γ. • Γx (the minimal Γ): isotropy group of a point x ∈ O. • |O| underlying topological space (possibly not a manifold). An introduction to orbifolds – p.5/20 Definition Formal Definition • An orbifold O is a metrizable top. space with a (maximal) atlas {Ui, Ui, Γi,φi} Ui = O, Γi < O(n) e S n Ui ⊂ R is Γi-invariant φei : Ui =∼ Ui/Γi homeo e n Ui ⊂ R e Ui ⊂ O =∼ Ui/Γi An introduction to orbifolds – p.5/20 Definition Formal Definition • An orbifold O is a metrizable top. space with a (maximal) atlas {Ui, Ui, Γi,φi} Ui = O, Γi < O(n) e S n Ui ⊂ R is Γi-invariant If y ∈ Ui ∩ Uj, then there is Uk φei : Ui =∼ Ui/Γi homeo s.t. y ∈ Uk ⊂ Ui ∩ Uj and e n Ui ⊂ R • i∗ :Γk ֒→ Γi ,e • i : Uk ֒→ Ui, diffeo with the image • i(γe· x)=ei∗(γ) · i(x) Ui ⊂ O =∼ Ui/Γi Γx = Γi isotropy group of a point ΣO ={ x | Γx 6= 1} x∈TUi An introduction to orbifolds – p.5/20 Dimension 2 Finite subgroups of O(2): cyclic group of rotations reflexion along a line dihedral group with n elements rots. and reflex. Local picture of 2-orbifolds: n n Γx cyclic order n Γx has 2 elements Γx dihedral An introduction to orbifolds – p.6/20 Dimension 2 Finite subgroups of O(2): cyclic group of rotations reflexion along a line dihedral group with n elements rots. and reflex. General picture in dim 2 2m4 n3 2m3 n1 2m1 n2 • |O2| surface, 2m2 2 ΣO2 = ∂|O | and points An introduction to orbifolds – p.6/20 Dimension 3 (loc.orientable) Finite subgroups of SO(3) (all elements are rotations): Cn D2n T12 O24 I60 cyclic dihedral tetrahedral octahedral icosahedral • O dim 3 and orientable: |O| = manifold, ΣO trivalent graph Cn D2n T12 O24 I60 n 3 4 5 ΣO locally: n 2 2 2 3 2 3 2 3 An introduction to orbifolds – p.7/20 Dimension 3 (loc.orientable) • O dim 3 and orientable: |O| = manifold, ΣO trivalent graph Cn D2n T12 O24 I60 n 3 4 5 ΣO locally: n 2 2 2 3 2 3 2 3 • Non orientable case: combine this with reflections along planes and antipodal map: a(x, y, z)=(−x, −y, −z) • R3/a = cone on RP2, is not a manifold. • In dim 4 and larger, ∃O orientable and O possibly not a manifold. An introduction to orbifolds – p.7/20 More examples: tessellation by cubes • Z3 translation group, R3/Z3 = S1 × S1 × S1 • But we can also consider other groups An introduction to orbifolds – p.8/20 More examples: tessellation by cubes • O = R3/hreflections on the sides of the cubei |O| is the cube and ΣO boundary of the cube • x in a face ⇒ Γx = Z/2Z reflexion 2 • x in an edge⇒ Γx =(Z/2Z) 3 • x in a vertex ⇒ Γx =(Z/2Z) An introduction to orbifolds – p.8/20 More examples: tessellation by cubes Consider the group generated by order 2 rotations around axis as in: An introduction to orbifolds – p.8/20 More examples: tessellation by cubes Consider the group generated by order 2 rotations around axis as in: 2 2 2 3 • |O| = S ΣO = Borromean rings. Γx =∼ Z/2Z acting by rotations. An introduction to orbifolds – p.8/20 More examples: tessellation by cubes R3/{ Full isometry group of the tessellation } • x in a face ⇒ Γx = Z/2Z reflexion • x in an edge ⇒ Γx = dihedral (extension by reflections of cyclic group of rotations) • x in a vertex ⇒ Γx = extension by reflections of dihedral, T12 or O24 An introduction to orbifolds – p.8/20 More examples: hyperbolic tessellation An introduction to orbifolds – p.9/20 More examples: hyperbolic tessellation 4 4 4 An introduction to orbifolds – p.9/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. −1 γ2 x0 −1 γ3 x0 −1 γ1 x0 x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. x0 γ1x0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. x0 γ1x0 γ2x0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. −1 γ1 x0 x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. −1 γ2 x0 −1 γ1 x0 x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. −1 γ2 x0 −1 γ3 x0 −1 γ1 x0 x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Fundamental domain • If Γ acts on R or Hn Dirichlet domain: Voronoi cell of the orbit of a point x0 with Γx0 = 1. −1 γ2 x0 −1 γ3 x0 −1 γ1 x0 x0 γ1x0 γ x γ3x0 2 0 The points with nontrivial stabilizer are on the boundary An introduction to orbifolds – p.10/20 Structures on orbifolds • Can define geometric structures on orbifolds by taking equivariant definitions on charts Ui, Γi. e • A Riemanian metric on the charts (Ui, Γi) requires: i − U has a Riemannian metric e − coordinatee changes are isometries − Γi acts isometrically on Ui e • e.g. Analytic, flat, hyperbolic, etc... An introduction to orbifolds – p.11/20 Structures on orbifolds • Can define geometric structures on orbifolds by taking equivariant definitions on charts Ui, Γi. e • A Riemanian metric on the charts (Ui, Γi) requires: i − U has a Riemannian metric e − coordinatee changes are isometries − Γi acts isometrically on Ui e • e.g. Analytic, flat, hyperbolic, etc... 2 2 4 2 2 2 6 has a flat metric (Euclidean) has a metric of curv −1 (hyperbolic) An introduction to orbifolds – p.11/20 Structures on orbifolds • Can define geometric structures on orbifolds by taking equivariant definitions on charts Ui, Γi. 2 e 4 2 4 2 4 has a flat metric (Euclidean) has a metric of curv −1 (hyperbolic) An introduction to orbifolds – p.11/20 Coverings p : O0 → O1 is an orbifold covering if −1 Every x ∈ O1 is in some U ⊂ O1 s.t.
Recommended publications
  • A Space-Time Orbifold: a Toy Model for a Cosmological Singularity
    hep-th/0202187 UPR-981-T, HIP-2002-07/TH A Space-Time Orbifold: A Toy Model for a Cosmological Singularity Vijay Balasubramanian,1 ∗ S. F. Hassan,2† Esko Keski-Vakkuri,2‡ and Asad Naqvi1§ 1David Rittenhouse Laboratories, University of Pennsylvania Philadelphia, PA 19104, U.S.A. 2Helsinki Institute of Physics, P.O.Box 64, FIN-00014 University of Helsinki, Finland Abstract We explore bosonic strings and Type II superstrings in the simplest time dependent backgrounds, namely orbifolds of Minkowski space by time reversal and some spatial reflections. We show that there are no negative norm physi- cal excitations. However, the contributions of negative norm virtual states to quantum loops do not cancel, showing that a ghost-free gauge cannot be chosen. The spectrum includes a twisted sector, with strings confined to a “conical” sin- gularity which is localized in time. Since these localized strings are not visible to asymptotic observers, interesting issues arise regarding unitarity of the S- matrix for scattering of propagating states. The partition function of our model is modular invariant, and for the superstring, the zero momentum dilaton tad- pole vanishes. Many of the issues we study will be generic to time-dependent arXiv:hep-th/0202187v2 19 Apr 2002 cosmological backgrounds with singularities localized in time, and we derive some general lessons about quantizing strings on such spaces. 1 Introduction Time-dependent space-times are difficult to study, both classically and quantum me- chanically. For example, non-static solutions are harder to find in General Relativity, while the notion of a particle is difficult to define clearly in field theory on time- dependent backgrounds.
    [Show full text]
  • Deformations of G2-Structures, String Dualities and Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected]
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons, and the Quantum Physics Commons Recommended Citation Barbosa, Rodrigo De Menezes, "Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles" (2019). Publicly Accessible Penn Dissertations. 3279. https://repository.upenn.edu/edissertations/3279 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3279 For more information, please contact [email protected]. Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Abstract We study M-theory compactifications on G2-orbifolds and their resolutions given by total spaces of coassociative ALE-fibrations over a compact flat Riemannian 3-manifold Q. The afl tness condition allows an explicit description of the deformation space of closed G2-structures, and hence also the moduli space of supersymmetric vacua: it is modeled by flat sections of a bundle of Brieskorn-Grothendieck resolutions over Q. Moreover, when instanton corrections are neglected, we obtain an explicit description of the moduli space for the dual type IIA string compactification. The two moduli spaces are shown to be isomorphic for an important example involving A1-singularities, and the result is conjectured to hold in generality. We also discuss an interpretation of the IIA moduli space in terms of "flat Higgs bundles" on Q and explain how it suggests a new approach to SYZ mirror symmetry, while also providing a description of G2-structures in terms of B-branes.
    [Show full text]
  • The Subgroups of a Free Product of Two Groups with an Amalgamated Subgroup!1)
    transactions of the american mathematical society Volume 150, July, 1970 THE SUBGROUPS OF A FREE PRODUCT OF TWO GROUPS WITH AN AMALGAMATED SUBGROUP!1) BY A. KARRASS AND D. SOLITAR Abstract. We prove that all subgroups H of a free product G of two groups A, B with an amalgamated subgroup V are obtained by two constructions from the inter- section of H and certain conjugates of A, B, and U. The constructions are those of a tree product, a special kind of generalized free product, and of a Higman-Neumann- Neumann group. The particular conjugates of A, B, and U involved are given by double coset representatives in a compatible regular extended Schreier system for G modulo H. The structure of subgroups indecomposable with respect to amalgamated product, and of subgroups satisfying a nontrivial law is specified. Let A and B have the property P and U have the property Q. Then it is proved that G has the property P in the following cases: P means every f.g. (finitely generated) subgroup is finitely presented, and Q means every subgroup is f.g.; P means the intersection of two f.g. subgroups is f.g., and Q means finite; P means locally indicable, and Q means cyclic. It is also proved that if A' is a f.g. normal subgroup of G not contained in U, then NU has finite index in G. 1. Introduction. In the case of a free product G = A * B, the structure of a subgroup H may be described as follows (see [9, 4.3]): there exist double coset representative systems {Da}, {De} for G mod (H, A) and G mod (H, B) respectively, and there exists a set of elements t\, t2,..
    [Show full text]
  • Jhep05(2019)105
    Published for SISSA by Springer Received: March 21, 2019 Accepted: May 7, 2019 Published: May 20, 2019 Modular symmetries and the swampland conjectures JHEP05(2019)105 E. Gonzalo,a;b L.E. Ib´a~neza;b and A.M. Urangaa aInstituto de F´ısica Te´orica IFT-UAM/CSIC, C/ Nicol´as Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain bDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract: Recent string theory tests of swampland ideas like the distance or the dS conjectures have been performed at weak coupling. Testing these ideas beyond the weak coupling regime remains challenging. We propose to exploit the modular symmetries of the moduli effective action to check swampland constraints beyond perturbation theory. As an example we study the case of heterotic 4d N = 1 compactifications, whose non-perturbative effective action is known to be invariant under modular symmetries acting on the K¨ahler and complex structure moduli, in particular SL(2; Z) T-dualities (or subgroups thereof) for 4d heterotic or orbifold compactifications. Remarkably, in models with non-perturbative superpotentials, the corresponding duality invariant potentials diverge at points at infinite distance in moduli space. The divergence relates to towers of states becoming light, in agreement with the distance conjecture. We discuss specific examples of this behavior based on gaugino condensation in heterotic orbifolds. We show that these examples are dual to compactifications of type I' or Horava-Witten theory, in which the SL(2; Z) acts on the complex structure of an underlying 2-torus, and the tower of light states correspond to D0-branes or M-theory KK modes.
    [Show full text]
  • The Free Product of Groups with Amalgamated Subgroup Malnorrnal in a Single Factor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF PURE AND APPLIED ALGEBRA Journal of Pure and Applied Algebra 127 (1998) 119-136 The free product of groups with amalgamated subgroup malnorrnal in a single factor Steven A. Bleiler*, Amelia C. Jones Portland State University, Portland, OR 97207, USA University of California, Davis, Davis, CA 95616, USA Communicated by C.A. Weibel; received 10 May 1994; received in revised form 22 August 1995 Abstract We discuss groups that are free products with amalgamation where the amalgamating subgroup is of rank at least two and malnormal in at least one of the factor groups. In 1971, Karrass and Solitar showed that when the amalgamating subgroup is malnormal in both factors, the global group cannot be two-generator. When the amalgamating subgroup is malnormal in a single factor, the global group may indeed be two-generator. If so, we show that either the non-malnormal factor contains a torsion element or, if not, then there is a generating pair of one of four specific types. For each type, we establish a set of relations which must hold in the factor B and give restrictions on the rank and generators of each factor. @ 1998 Published by Elsevier Science B.V. All rights reserved. 0. Introduction Baumslag introduced the term malnormal in [l] to describe a subgroup that intersects each of its conjugates trivially. Here we discuss groups that are free products with amalgamation where the amalgamating subgroup is of rank at least two and malnormal in at least one of the factor groups.
    [Show full text]
  • Arxiv:Hep-Th/9404101V3 21 Nov 1995
    hep-th/9404101 April 1994 Chern-Simons Gauge Theory on Orbifolds: Open Strings from Three Dimensions ⋆ Petr Horavaˇ ∗ Enrico Fermi Institute University of Chicago 5640 South Ellis Avenue Chicago IL 60637, USA ABSTRACT Chern-Simons gauge theory is formulated on three dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known arXiv:hep-th/9404101v3 21 Nov 1995 to be related to 2D CFT on closed string surfaces; here I show that the theory on orbifolds is related to 2D CFT of unoriented closed and open string models, i.e. to worldsheet orb- ifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories. E-mail address: [email protected] ⋆∗ Address after September 1, 1994: Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544. 1. Introduction Since the first appearance of the notion of “orbifolds” in Thurston’s 1977 lectures on three dimensional topology [1], orbifolds have become very appealing objects for physicists.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself.
    [Show full text]
  • Ads Orbifolds and Penrose Limits
    IPM/P-2002/061 UCB-PTH-02/54 LBL-51767 hep-th/yymmnnn AdS orbifolds and Penrose limits Mohsen Alishahihaa, Mohammad M. Sheikh-Jabbarib and Radu Tatarc a Institute for Studies in Theoretical Physics and Mathematics (IPM) P.O.Box 19395-5531, Tehran, Iran e-mail: [email protected] b Department of Physics, Stanford University 382 via Pueblo Mall, Stanford CA 94305-4060, USA e-mail: [email protected] c Department of Physics, 366 Le Conte Hall University of California, Berkeley, CA 94720 and Lawrence Berkeley National Laboratory Berkeley, CA 94720 email:[email protected] Abstract In this paper we study the Penrose limit of AdS5 orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS =¡ S5 spatial orbifold we observe that after the Penrose limit we 5 £ obtain the same result as the Penrose limit of AdS S5=¡. We identify the 5 £ corresponding BMN operators in terms of operators of the gauge theory on R £ S3=¡. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S5 orbifold, however, the higher loop correction can distinguish between two cases. 1 Introduction In the past ¯ve years important results have been obtained relating closed and open string theories, in particular the AdS/CFT correspondence [1] had important impact into the understanding between these two sectors. The main problem in testing the conjecture beyond the supergravity level is the fact that we do not know how to quantize string theory in the presence of RR-fluxes.
    [Show full text]
  • 23. Mon, Mar. 10 the Free Product Has a Universal Property, Which Should Remind You of the Property of the Disjoint Union of Spaces X Y
    23. Mon, Mar. 10 The free product has a universal property, which should remind you of the property of the disjoint union of spaces X Y . First, for any groups H and K, there are inclusion homomorphisms H H K and K Hq K. ! ⇤ ! ⇤ Proposition 23.1. Suppose that G is any group with homomorphisms ' : H G and H ! 'K : K G. Then there is a (unique) homomorphism Φ:H K G which restricts to the given! homomorphisms from H and K. ⇤ ! Our result from last time can be restated as follows: Proposition 23.2. Suppose that X = U V , where U and V are path-connected open subsets and both contain the basepoint x .IfU V is[ also path-connected, then the natural homomorphism 0 \ Φ:⇡ (U) ⇡ (V ) ⇡ (X) 1 ⇤ 1 ! 1 is surjective. Now that we have a surjective homomorphism to ⇡1(X), the next step is to understand the kernel N. Indeed, then the First Isomorphism Theorem will tell us that ⇡1(X) ⇠= ⇡1(U) ⇡1(V )/N . Here is one way to produce an element of the kernel. Consider a loop ↵ in U V . We can⇤ then consider \ its image ↵U ⇡1(U) and ↵V ⇡1(V ). Certainly these map to the same element of ⇡1(X), so 1 2 2 ↵U ↵V− is in the kernel. Proposition 23.3. With the same assumptions as above, the kernel K of ⇡1(U) ⇡1(V ) ⇡1(X) 1 ⇤ ! is the normal subgroup N generated by elements of the form ↵U ↵V− . 1 Recall that the normal subgroup generated by the elements ↵U ↵V− can be characterized either 1 as (1) the intersection of all normal subgroups containing the ↵U ↵V− or (2) the subgroup generated 1 1 by all conjugates g↵U ↵V− g− .
    [Show full text]
  • Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces
    Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces∗ E. Jespers A. Kiefer Á. del Río November 6, 2018 Abstract The problem of describing the group of units U(ZG) of the integral group ring ZG of a finite group G has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order O in the simple epimorphic images A of the rational group algebra QG. Making use of the presentation part of Poincaré’s Polyhedron Theorem, Pita, del Río and Ruiz proposed such a method for a large family of finite groups G and consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of U(ZG) for a large family of finite groups G. In order to handle many more groups, one would like to extend Poincaré’s Method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra A has degree 2 then via the Galois embeddings of the centre of the algebra A one considers the group of reduced norm one elements of the order O as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of QG and in particular describe the unit group of ZG for every group G with irreducible character degrees less than or equal to 2.
    [Show full text]
  • Fundamental Domains for Genus-Zero and Genus-One Congruence Subgroups
    LMS J. Comput. Math. 13 (2010) 222{245 C 2010 Author doi:10.1112/S1461157008000041e Fundamental domains for genus-zero and genus-one congruence subgroups C. J. Cummins Abstract In this paper, we compute Ford fundamental domains for all genus-zero and genus-one congruence subgroups. This is a continuation of previous work, which found all such groups, including ones that are not subgroups of PSL(2; Z). To compute these fundamental domains, an algorithm is given that takes the following as its input: a positive square-free integer f, which determines + a maximal discrete subgroup Γ0(f) of SL(2; R); a decision procedure to determine whether a + + given element of Γ0(f) is in a subgroup G; and the index of G in Γ0(f) . The output consists of: a fundamental domain for G, a finite set of bounding isometric circles; the cycles of the vertices of this fundamental domain; and a set of generators of G. The algorithm avoids the use of floating-point approximations. It applies, in principle, to any group commensurable with the modular group. Included as appendices are: MAGMA source code implementing the algorithm; data files, computed in a previous paper, which are used as input to compute the fundamental domains; the data computed by the algorithm for each of the congruence subgroups of genus zero and genus one; and an example, which computes the fundamental domain of a non-congruence subgroup. 1. Introduction The modular group PSL(2; Z) := SL(2; Z)={±12g is a discrete subgroup of PSL(2; R) := SL(2; R)={±12g.
    [Show full text]
  • K3 Surfaces and String Duality
    RU-96-98 hep-th/9611137 November 1996 K3 Surfaces and String Duality Paul S. Aspinwall Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 ABSTRACT The primary purpose of these lecture notes is to explore the moduli space of type IIA, type IIB, and heterotic string compactified on a K3 surface. The main tool which is invoked is that of string duality. K3 surfaces provide a fascinating arena for string compactification as they are not trivial spaces but are sufficiently simple for one to be able to analyze most of their properties in detail. They also make an almost ubiquitous appearance in the common statements concerning string duality. We arXiv:hep-th/9611137v5 7 Sep 1999 review the necessary facts concerning the classical geometry of K3 surfaces that will be needed and then we review “old string theory” on K3 surfaces in terms of conformal field theory. The type IIA string, the type IIB string, the E E heterotic string, 8 × 8 and Spin(32)/Z2 heterotic string on a K3 surface are then each analyzed in turn. The discussion is biased in favour of purely geometric notions concerning the K3 surface itself. Contents 1 Introduction 2 2 Classical Geometry 4 2.1 Definition ..................................... 4 2.2 Holonomy ..................................... 7 2.3 Moduli space of complex structures . ..... 9 2.4 Einsteinmetrics................................. 12 2.5 AlgebraicK3Surfaces ............................. 15 2.6 Orbifoldsandblow-ups. .. 17 3 The World-Sheet Perspective 25 3.1 TheNonlinearSigmaModel . 25 3.2 TheTeichm¨ullerspace . .. 27 3.3 Thegeometricsymmetries . .. 29 3.4 Mirrorsymmetry ................................. 31 3.5 Conformalfieldtheoryonatorus . ... 33 4 Type II String Theory 37 4.1 Target space supergravity and compactification .
    [Show full text]