8. Compactification and T-Duality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
Off-Shell Interactions for Closed-String Tachyons
Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds. -
Lectures on D-Branes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable. -
Tachyon-Dilaton Inflation As an Α'-Non Perturbative Solution in First
Anna Kostouki Work in progress with J. Alexandre and N. Mavromatos TachyonTachyon --DilatonDilaton InflationInflation asas anan αα''--nonnon perturbativeperturbative solutionsolution inin firstfirst quantizedquantized StringString CosmologyCosmology Oxford, 23 September 2008 A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 1 OutlineOutline • Motivation : String Inflation in 4 dimensions • Closed Bosonic String in Graviton, Dilaton and Tachyon Backgrounds; a non – perturbative configuration • Conformal Invariance of this model • Cosmological Implications of this model: FRW universe & inflation (under conditions) • Open Issues: Exit from the inflationary phase; reheating A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 2 MotivationMotivation Inflation : • elegant & simple idea • explains many cosmological observations (e.g. “horizon problem”, large - scale structure) Inflation in String Theory: • effective theory • in traditional string theories: compactification of extra dimensions of space-time is needed • other models exist too, but no longer “simple & elegant” A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 3 ProposalProposal • Closed Bosonic String • graviton, dilaton and tachyon background • field configuration non-perturbative in Does it satisfy conformal invariance conditions? A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 4 ConformalConformal propertiesproperties ofof thethe configurationconfiguration General field redefinition: • Theory is invariant • The Weyl anomaly coefficients transform : ( ) A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 5 ConformalConformal propertiesproperties ofof thethe configurationconfiguration • 1-loop beta-functions: homogeneous dependence on X0, besides one term in the tachyon beta-function • Power counting → Every other term that appears at higher loops in the beta-functions is homogeneous A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 6 ConformalConformal propertiesproperties ofof thethe configurationconfiguration One can find a general field redefinition , that: 1. -
S-Duality of D-Brane Action at Order $ O (\Alpha'^ 2) $
S-duality of D-brane action 2 at order O(α′ ) Mohammad R. Garousi1 Department of Physics, Ferdowsi University of Mashhad P.O. Box 1436, Mashhad, Iran Abstract Using the compatibility of the DBI and the Chern-Simons actions with the T- duality transformations, the curvature corrections to these actions have been recently extended to include the quadratic B-field couplings at order O(α′2). In this paper, we use the compatibility of the couplings on D3-brane with the S-duality to find the nonlinear RR couplings at order O(α′2). We confirm the quadratic RR couplings in the DBI part with the disk-level scattering amplitude. Using the regularized non- holomorphic Eisenstein series E1, we then write the results in SL(2,Z) invariant form. arXiv:1103.3121v5 [hep-th] 25 Dec 2013 [email protected] 1 Introduction The low energy effective field theory of D-branes consists of the Dirac-Born-Infeld (DBI) [1] and the Chern-Simons (CS) actions [2]. The curvature corrections to the CS part can be found by requiring that the chiral anomaly on the world volume of intersecting D-branes (I-brane) cancels with the anomalous variation of the CS action. This action for a single ′2 Dp-brane at order O(α ) is given by [3, 4, 5], 2 ′2 π α Tp (p−3) SCS C tr(RT RT ) tr(RN RN ) (1) p+1 ⊃ − 24 ZM ∧ ∧ − ∧ p+1 where M represents the world volume of the Dp-brane. For totally-geodesic embeddings of world-volume in the ambient spacetime, RT,N are the pulled back curvature 2-forms of the tangent and normal bundles respectively (see the appendix in ref. -
Pitp Lectures
MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist. -
From Vibrating Strings to a Unified Theory of All Interactions
Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory. -
M-Theory Solutions and Intersecting D-Brane Systems
M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity. -
Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements. -
New Worldsheet Formulae for Conformal Supergravity Amplitudes
New Worldsheet Formulae for Conformal Supergravity Amplitudes Joseph A. Farrow and Arthur E. Lipstein Department of Mathematical Sciences Durham University, Durham, DH1 3LE, United Kingdom Abstract We use 4d ambitwistor string theory to derive new worldsheet formulae for tree- level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables. arXiv:1805.04504v3 [hep-th] 11 Jul 2018 1 Contents 1 Introduction 2 2 Review 4 3 Plane Wave Graviton Multiplet Scattering 6 3.1 Supersymmetric Formula . .8 4 Non-Plane Wave Graviton Multiplet Scattering 9 5 Conclusion 11 A BRST Quantization 13 B Derivation of Berkovits-Witten Formula 16 C Momentum Derivatives 17 D Non-plane Wave Examples 19 D.1 Non-plane Wave Scalar . 19 D.2 Non-plane Wave Graviton . 21 1 Introduction Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1], the study of scattering amplitudes has suggested intruiging new ways of formulating quantum field theory. -
5D Kaluza-Klein Theories - a Brief Review
5D Kaluza-Klein theories - a brief review Andr´eMorgado Patr´ıcio, no 67898 Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (Dated: 21 de Novembro de 2013) We review Kaluza-Klein theory in five dimensions from the General Relativity side. Kaluza's original idea is examined and two distinct approaches to the subject are presented and contrasted: compactified and noncompactified theories. We also discuss some cosmological implications of the noncompactified theory at the end of this paper. ^ ^ 1 ^ I. INTRODUCTION where GAB ≡ RAB − 2 g^ABR is the Einstein tensor. Inspired by the ties between Minkowki's 4D space- For the metric, we identify the αβ-part ofg ^AB with time and Maxwell's EM unification, Nordstr¨om[3] in 1914 gαβ, the α4-part as the electromagnetic potential Aα and and Kaluza[4] in 1921 showed that 5D general relativ- g^44 with a scalar field φ, parametrizing it as follows: ity contains both Einstein's 4D gravity and Maxwell's g + κ2φ2A A κφ2A EM. However, they imposed an artificial restriction of no g^ (x; y) = αβ α β α ; (4) AB κφ2A φ2 dependence on the fifth coordinate (cylinder condition). β Klein[5], in 1926, suggested a physical basis to avoid this where κ is a multiplicative factor. If we identifyp it in problem in the compactification of the fifth dimension, terms of the 4D gravitational constant by κ = 4 πG, idea now used in higher-dimensional generalisations to then, using the metric4 and applying the cylinder con- include weak and strong interactions. -
What Lattice Theorists Can Do for Superstring/M-Theory
July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles.