The Challenge of Neutrinos by Christine Sutton

Total Page:16

File Type:pdf, Size:1020Kb

The Challenge of Neutrinos by Christine Sutton The challenge of neutrinos by Christine Sutton Neutrino pioneers - left to right, Paul Dirac, Wolfgang Pauli., Rudolf Peierls. (Photo MP Niels Bohr Library) Earlier this year, a team of physicists working at Los Alamos claimed a possible sighting of neutrino oscillations (June, page 13). However even before the claim appeared in the scientific literature, newspaper reports had leaked the possible findings and their implications. Detecting particles which can pass unhindered through the Earth provides the ultimate physics challenge. Neutrinos have always captivated public imagination and make compelling reading. In the wake of the latest neutrino episode, Oxford physi­ cist and science writer Christine Sutton looks back on the short but volatile history of the neutrino and its attendant publicity. strangers to controversy, for they beta-decay electrons varies continu­ With the availability of high were in a sense born amidst it, and ously up to a maximum, with peaks energy neutrino beams in the as recent work on neutrino oscilla­ ("lines") at only a few energies. And 1970s, physicists eagerly tions demonstrates they continue to he was able to explain how the scoured each new batch of data fuel debate. This is of course largely photographic technique could "fake" for signs of exciting new physics. to do with the fact that neutrinos have lines through its great sensitivity to But few initial 'sightings' proved no electric charge and experience small changes in intensity. to be of substance. One of the only the weak nuclear force, making The First World War interrupted major problems faced by such them supremely difficult to detect. these investigations, but afterwards experiments, lies with neutrons The debates surrounding neutrinos arguments between a continuous produced outside the apparatus, began in the first decades of the 20th energy spectrum and discrete lines either by beam particles or by century, before the particle had even continued until 1927, when Charles cosmic rays. been thought of. Studies pioneered Drummond Ellis and William Wooster by Use Meitner and Otto Hahn at Cambridge published results from Further reading: Spaceship suggested that the electrons emitted a definitive experiment in which they Neutrino, by Christine Sutton, in beta-decay emerged with discrete measured the total electron energy in Cambridge University Press, energies. In these experiments a a single decay process. If the elec­ 1992, ISBN 0-521-36404-3 (he), spectrometer bent the electrons ac­ trons always started out with the 0-521-36703-3 (pb). cording to their energy, and a photo­ same energy but lost varying graphic plate detected the electrons amounts in subsidiary processes to emerging through a movable slit, so give many lines, as Meitner believed, yielding "lines" at various energies. then the result would equal the eutrinos", Maurice Goldhaber But when James Chadwick used a maximum at the end of the spectrum. Nonce remarked, "are remark­ point counter instead of a photo­ However Ellis and Wooster meas­ able particles: they induce courage in graphic plate, he could not find "the ured an energy equal to the average theoreticians and perseverance in ghost of a line". Instead, he con­ energy of the spectrum, so confirm­ experimenters". They are also no vinced himself that the energy of the ing that the electrons started out with 36 CERN Courier, September 1995 The challenge of neutrinos In 1953 Clyde Cowan and Fred Reines used a newly invented supply of copious numbers of neutrinos - a nuclear reactor - in the 'Project Poltergeist' experiment. This provided the first experimental evidence for interactions from a neutrino source. (Photo Los Alamos) a range of energies. But this raised a new problem. If the electron shares the decay energy with the nucleus, this "two-body" process should always yield elec­ trons of the same energy - provided that energy and momentum are conserved. No less a physicist than Niels Bohr suggested that these cherished laws of physics might well break down within the confines of the nucleus, but Wolfgang Pauli would have none of this. He suggested instead that an invisible third party was involved - the particle Enrico Fermi later dubbed the neutrino, or "little neutral one". In his famous letter of 4 December 1930 to Meitner and friends, in which he proposed the idea of the neutrino, Pauli said "For the time being I dare not publish anything ... and address myself confidentially first to you He nuclear force, so the probability for nos - a nuclear reactor - together with remained cautious, and although he interactions is typically 20 orders of what was then a large detector with presented the ideas at a meeting in magnitude smaller. But anything that 300 litres of liquid scintillator. At first Pasadena in July 1931, he did not is created can in principle be de­ it seemed that the rate for the neu­ have his talk printed. However tected. "Obviously", as Leon trino signal was as high when the (interestingly enough, in the light of Lederman has written, "a particle that reactor was off as when it was on. more recent debates) a report did reacted with nothing could never be But then they realized that they had appear in the New York Times. detected. It would be a fiction. The the hint of a signal above a back­ Pauli realized that his particle would neutrino is just barely a fact." ground five times greater. Later be difficult to detect, and in 1934 To be sure of detecting even a few studies, with the detector under­ Hans Bethe and Rudolf Peierls neutrino interactions you need as ground, showed that the background calculated an interaction cross- many neutrinos as possible and as was due mainly to cosmic rays. So section of less than 10~44 cm2, sug­ large a detector as possible. But you Cowan and Reines went to a more gesting that "there is no practically also need to understand completely powerful reactor and built an im­ possible way of observing the neu­ the backgrounds - the processes due proved detector to reduce the back­ trino". But as Peierls commented 50 to other particles that mimic the ground. Here they found counts of years later, they were not allowing for signal you expect for the neutrino. typically 1.6 per hour with the reactor "the existence of nuclear reactors (or Undoubtedly, in all cases where on, and 0.4 when it was off - and they particle accelerators) producing results in neutrino experiments declared the neutrino discovered. neutrinos in vast quantities" or for disagree with each other or do not Cosmic rays are a major problem "the ingenuity of experimentalists". stand the test of time, it is because with neutrino experiments, in particu­ Almost any other particle imagina­ the backgrounds have not been lar because they give rise to neutrons ble is easier to detect than the properly understood. outside the apparatus, which then neutrino. Being uncharged, it leaves In their first attempt to detect the look like neutrinos when they interact no tracks in a detector such as a neutrino in 1953 Clyde Cowan and inside the detector. Neutron back­ bubble chamber; and unlike the Fred Reines used a newly invented grounds played a major role in the neutron it does not feel the strong supply of copious numbers of neutri­ efforts to understand neutrino inter- 38 CERN Courier, September 1995 The challenge of neutrinos actions in the bubble chamber spectrometer to measure precisely tected in the experiment. To oscillate Gargamelle, which revealed "neutral the high energy end of the spectrum in this way, the two types of neutrino currents" at CERN in 1973. This of electrons from beta decay. The would have to differ slightly in mass, discovery proved to be a keystone in shape here depends critically on implying in turn that at least one type the development of the present whether the neutrinos that share the must have a finite mass. Standard Model of particle interac­ energy with the electrons have any Neither of these experiments turned tions, but for a while it too became rest-mass energy. Lyubimov and out to stand the test of time. Nor did the centre of controversy. colleagues claimed to have evidence the excitement generated several The main difficulties arose with the for a mass between 14 and 46 eV - years later by suggestions of a neu­ classification of events in which a an exciting prospect as it implied that trino with a mass of 17 keV, again in spray of hadrons (protons, pions etc) neutrinos from the big bang might an experiment using a spectrometer appeared as if from nowhere and together have sufficient mass eventu­ to measure the energy spectrum of were not associated with an identifi­ ally to halt the expansion of the beta-decay. In this case, Andrew able muon. While these could be Universe! Hime and his colleagues realized neutral current events due to neutri­ Meanwhile, across the world in eventually that scattering effects nos, they could also be due to California, Fred Reines claimed were faking the appearance of this neutrons, and the onus was on the evidence of a different kind for massive neutrino in several experi­ Gargamelle team to show that they neutrino mass (which again made the ments. fully understood the ways in which newspapers before publication in the So in a sense, the story comes full neutrons could enter the detector scientific literature). In studying circle, echoing the early problems from the surrounding material. neutrinos from the Savannah River that Hahn and Meitner faced. But the The team was put under additional reactor, Reines and colleagues important point to remember is that pressure when conflicting signals believed they had detected a smaller none of the "wrong" results with came from the HPWF (Harvard, ratio between charged current and neutrinos is a waste of time.
Recommended publications
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • The Standard Model
    The Standard Model by Christine Sutton In May 1983, the central detector of the UA1 experiment at CERN's proton-antiproton collider showed the tell-tale signature of the long-awaited Z particle as it decays into an electron-positron pair (arrowed). As the electrically neutral carrier of the weak force, the Z° plays a vital role in the Standard Model. The initial evidence from Fermilab (see previous article) for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. Model encompasses all the elemen­ their interactions emerge. Instead it is In this specially commissioned tary particles we now know and three an amalgam of the best theories we overview, physics writer Christine of the fundamental forces. The basic have, which we can bolt together Sutton explains the Standard building blocks are two sets or because they have enough in com­ Model. "families" or "matter particles" - the mon to suggest an underlying unity, quarks and the leptons (see page 5). although due to our ignorance the These particles interact with each joins still clearly show. t is nearly 100 years since the other through the exchange of force The structure as a whole rests on a I discovery of the first subatomic carriers or "messengers".
    [Show full text]
  • 2005 Annual Report American Physical Society
    1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists.
    [Show full text]
  • Physics Newsletter 2019
    Harvard University Department of Physics Newsletter FALL 2019 A Microscopic Look At Quantum Materials it takes many physicists to solve quantum many-body problems CONTENTS Letter from the Chair ............................................................................................................1 Letter from the Chair ON THE COVER: An experiment-theory collaboration PHYSICS DEPARTMENT HIGHLIGHTS at Harvard investigates possible Letters from our Readers.. ..................................................................................................2 Dear friends of Harvard Physics, While Prof. Prentiss has been in our department since 1991 (she was theories for how quantum spins (red the second female physicist to be awarded tenure at Harvard), our and blue spheres) in a periodic The sixth issue of our annual Faculty Promotion ............................................................................................................... 3 next article features a faculty member who joined our department potential landscape interact with one Physics Newsletter is here! In Memoriam ........................................................................................................................ 4 only two years ago, Professor Roxanne Guenette (pp. 22-26). another to give rise to intriguing and Please peruse it to find out about potentially useful emergent Current Progress in Mathematical Physics: the comings and goings in our On page 27, Clare Ploucha offers a brief introduction to the Harvard phenomena. This is an artist’s
    [Show full text]
  • History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair
    History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair From the Editor Forum News APS & AIP News Book Review Reports Forum Chair Urges APS Centennial Participation The American Physical Society celebrates its 100th anniversary in Atlanta, Georgia, at an expanded six-day meeting from March 20-26, 1999, which will be jointly sponsored by the American Association of Physics Teachers. This will be the largest meeting of physicists ever held, and the APS Forum on the History of Physics will play a central role in making it a truly memorable event. The 20th century has been the Century of Physics. The startling discoveries of X-rays, radioactivity, and the electron at the end of the 19th century opened up vast new territories for exploration and analysis. Quantum theory and relativity theory, whose consequences are far from exhausted today, formed the bedrock for subsequent developments in atomic and molecular physics, nuclear and particle physics, solid state physics, and all other domains of physics, which shaped the world in which we live in times of both peace and war. A large historical wall chart exhibiting these developments, to which members of the Forum contributed their expertise, will be on display in Atlanta. Also on display will be the well-known Einstein exhibit prepared some years ago by the American Institute of Physics Center for History of Physics. Two program sessions arranged by the Forum at the Atlanta Centennial Meeting also will explore these historic 20th-century developments. The first, chaired by Ruth H. Howes (Ball State University), will consist of the following speakers and topics: John D.
    [Show full text]
  • Faces & Places
    CERN Courier September 2011 Faces & Places F a c i l i t i e s CERN AMS-02 control centre begins operations A month after the successful installation of the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station (ISS), the AMS Payload Operation and Control Centre (POCC) began operation from a specially constructed building on CERN’s Prévessin site on 24 June. The POCC will control AMS-02 for its entire lifetime. Data-taking started soon after AMS-02 was installed on the ISS on 19 May, when the spectrometer began detecting cosmic rays at a rate of about 50 million a day. With the detector operational, the AMS team was able Charles Bolden, centre, with Sam Ting, Bolden together with Claude Nicollier, left, to transfer the POCC successfully from the right, and Saul Gonzalez, at the AMS POCC. Switzerland’s first astronaut. Johnson Space Center in Houston to the new building at CERN. in space, another ensures that data are the last flight of the NASA space shuttle The experiment is controlled from the properly processed by a cluster of computers Endeavour (CERN Courier July/August POCC round the clock. Each subsystem has at CERN, before distribution to regional 2011 p23). While at CERN, Bolden, who a dedicated monitor desk and each is devoted centres for specific, detector-related analysis had piloted the space shuttle Discovery to data flow and to the command function – and calibration. into orbit with the Hubble telescope in the the only position that can issue commands The POCC started operation at CERN payload bay, had a chance encounter with to be uploaded to AMS-02 from NASA’s a day after a visit by Charles Bolden, a an old acquaintance, Claude Nicollier, Marshall Space Flight Center in Alabama.
    [Show full text]
  • Os Físicos Brasileiros E Os Prêmios Nobel De Física (PNF) De 1957, 1979, 1980, 1984 E 1988
    SEARA DA CIÊNCIA CURIOSIDADES DA FÍSICA José Maria Bassalo Os Físicos Brasileiros e os Prêmios Nobel de Física (PNF) de 1957, 1979, 1980, 1984 e 1988. O PNF de 1957 foi concedido aos físicos sino-norte-americanos Chen Ning Yang (n.1922) e Tsung- Dao Lee (n.1926) pela descoberta da quebra da paridade nas interações fracas. O PNF de 1979, foi outorgado aos físicos, os norte-americanos Steven Weinberg (n.1933) e Sheldon Lee Glashow (n.1932) e o paquistanês Abdus Salam (1926-1996) pelo desenvolvimento da Teoria Eletrofraca que unificou as interações eletromagnética e fraca. O PNF de 1980 foi atribuído aos físicos norte- americanos James Watson Cronin (n.1931) e Val Logsdon Fitch (n.1923) pela descoberta da violação da simetria carga-paridade (CP). O PNF de 1984 foi recebido pelo físico italiano Carlo Rubbia (n.1934) e pelo engenheiro e físico holandês Simon van der Meer (n.1925) pela descoberta das partículas mediadoras da interação fraca. E o PNF de 1988, foi partilhado pelos físicos norte-americanos Leon Max Lederman (n.1922), Melvin Schwartz (1932-2006) e Jack Steinberger (n.1921) (de origem alemã) por desenvolverem o método de feixes de neutrinos e pela conseqüente descoberta do neutrino do múon ( ). Neste verbete, vou destacar os trabalhos de físicos estrangeiros e brasileiros que se relacionaram, diretamente ou indiretamente, com esses Prêmios. Em verbetes desta série, vimos como ocorreu a descoberta e a explicação do fenômeno físico chamado de radioatividade. Como essa explicação é importante para entender o significado do PNF/1957, façamos um pequeno resumo dessa explicação, principalmente a da “radioatividade beta ( )”.
    [Show full text]
  • PERSPECTIVES in AMERICAN HISTORY by Leo Szilard Edited By
    OFFPRINT FROM PERSPECTIVES IN AMERICAN HISTORY VOLUME II • 1968 Reminiscences by Leo Szilard edited by Gertrud Weiss Szilard and Kathleen R. Windsor REMINISCENCES* by LEO SZILARD edited by Gertrud Weiss Szilard and Kathleen R. Winsor [EDITORs' NOTE: Leo Szilard at various times considered writing his own biography, but he never did. He had a sense of history, however, and care­ fully preserved, in folde~s marked "History," all correspondence and other documents which he thought to be of historical signiftcance. In 1951, when he seriously contemplated writing the history of the Manhattan Project, he organized the pertinent documents into ten folders, by different topics and time periods. The documents which are appended here come largely from this collection which Szilard selected himself. He also drafted an outline for his memoirs. During a period of serious illness in 1960, which kept him in the hospital for a year, he used a tape recorder-which had been put into his sick room for the purpose of an oral history project-to dictate instead the first draft of The Voice of the Dolphins and Other Stories (New York, 1961), a whimsical history of the future twenty-five years, which seemed vastly more important to him than the history of the past quarter century. However, at times he enjoyed giving interviews to interested visitors. On a few such occasions his wife switched on his tape recorder. What follows is an exact transcription of parts of these tapes, with editing limited to the minimum necessary to change spoken to written English. These highly personal, pungent, and incisive comments by a leading par­ ticipant in three great episodes in recent American history-the migration of intellectuals from Hitler's Europe to America; the development of a nuclear chain reaction; and the effort to prevent the use of atomic bombs and to estab­ lish civilian control of atomic energy-are published here by courtesy of Mrs.
    [Show full text]
  • Taking the Subatomic Grand Tour the Secrets of the World of Elementary Particles Revealed
    book reviews Taking the subatomic Grand Tour The secrets of the world of elementary particles revealed. The Particle Odyssey: A Journey to the Heart of Matter by Frank Close, Michael Marten & FERMILAB Christine Sutton Oxford University Press: 2002. 246 pp. £29.95, $45. Ken Peach The development of the standard model of particles and their interactions is one of the major scientific achievements of the twen- tieth century. The electron was the first ‘elementary particle’ to be discovered, by J. J. Thomson (working largely on his own) in 1897, and the top quark was the last of the standard model’s ‘fundamental fermions’ to be discovered, by two large teams at the Tevatron near Chicago in 1995. In between, special and general relativity, quantum mechanics and a deep understanding of symmetry (explicit and hidden, global and local, absolute and spontaneously broken) have transformed our understanding of the dynamics of the Universe. Within this frame- work, a remarkably complete description of the way in which the Universe works has Problem particle: the top quark, here decaying into muons (blue tracks), wasn’t discovered until 1995. been developed, and all but one of its ingre- dients experimentally verified — only the ingredient (quarks, leptons, gauge bosons tions. Most of the loopholes have since been elusive Higgs particle remains undetected. and other whimsies associated with high- closed: the top quark has now been discov- The Particle Odyssey describes a century energy physics) is described and illustrated, ered, the electroweak sector has survived of discovery and creativity through a series along with photographs and biographical precision scrutiny at the Large Electron– of stunning images and photographs.
    [Show full text]
  • The Great Survivor
    Dubna - the great survivor atoms are now around the corner. This year, as CERN celebrates its chine in the world. This machine is The Conference closed with the 40th anniversary (November, page still operational, and features in the award of N. Hamann Prize to A. 26), not far behind in the celebration Guinness Book of records as the Masoni of Cagliari, for his presenta­ stakes is the Joint Institute for Nu­ planet's largest electromagnet. tion on a high statistics study of iota clear Research, Dubna, near Mos­ While eclipsed by the new genera­ decay with the Obelix spectrometer. cow, established in 1956. While tion of strong focusing machines, the This Prize, funded by the Jozef CERN's goal was to provide a Synchrophasotron enjoyed a new Stefan Institute, Ljubljana, is in physics platform on which to rebuild lease of life as a heavy ion machine memory of Niklaus Hamann, PS Western European science after (up to silicon-28), as well as provid­ coordinator and LEAR physicist who World War II, JINR had a similar ing polarized deuteron beams. The died last year, aged 40. mission for the USSR and the social­ machine currently runs for some ist countries, including Eastern 1,500 hours per year, providing Europe. research material for more than 500 The fact that both organizations are scientists from 100 institutions. reaching their 40th anniversary The next energy step had very testifies to their success. While their different scenarios at CERN and at aims were very similar, their political JINR. In in the early 1970s, CERN contexts and scientific strategies decided to build the '300 GeV have led along very different routes.
    [Show full text]
  • Volume I - Science
    THE COLLECTED ORKS OF LEO SZILARD VOLUME I - SCIENCE Edited by Bernard T. Feld and Gertrud Weiss Szilar d with the assistance of Kathleen R. Winsor -I \t ( I ( {/ r Introductory Essays by Carl F . :Jrokart Bernard T. Feld Maurice Ooldhaber Aaron Noviok. Julius Ta.bin M. I . T. Press, Cambridge ,Mass. t I I II{ n ( 0 .!.;t-- Ct((cl L (r- u [ ( ~ A [1· {r I "1 (1 - ' ch ~Y. ,, • l It I I { . ( J L L· I u( I Jacques Honod Professor, College de France Director of Pasteur Institute Paris, France Carl H. Eckart Professor of Geophysics University of California, San Diego Bernard T. Feld Professor of Physics Massachusetts Institute of Technology Boston, Hassachusetts Haurice Goldhaber Director, Brookhaven National Laboratory Upton, Long Island, New York Aaron Novick Professor of Biology Institute of Molecular Biology University of Oregon Eugene, Oregon Julius Tabin Patent Attorney Chicago, Illinois Gertrud Weiss Szilard, M. D. School of Medicine University of California, San Diego Kathleen R. Winsor Librarian University of California, San Diego TABLE OF CONTENTS 1 I ( l C { ForewoJl to Collected Works ( f') Preface ( --Oart_rud_ Weiss Szilard) rriculum Vitae by Leo Szilard (From Grant Application) ~ ~ )) '> tA.t..c( SECTION I. PU:BLISHED PAPERS IN PHYSICS tq• (..~ 1939 Bibliography A. Thermodynamics ,\ Introdu. ctory :&:~say by Carl H. Eokart ~ _ f-lr I/ c 1 -• B. Expel'imenta.l work with x-rays ~ ) :, , 0 ( c. Nuclear Physi s Introductory Es y by Maurice Goldhaber ~ f·- ;-:. J SECTION II. UNPUBLISHED PAPERS AND REPORTS IN PHYSICS, ETALLURGY AND ENGINEERING, \, (- Declassified documents from Manhatta.nProject) ( 1940- 1945J Bibliography I.
    [Show full text]
  • Thirty Years of Erice on the Brane1
    IMPERIAL-TP-2018-MJD-03 Thirty years of Erice on the brane1 M. J. Duff Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, USA & Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom & Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, United Kingdom Abstract After initially meeting with fierce resistance, branes, p-dimensional extended objects which go beyond particles (p = 0) and strings (p = 1), now occupy centre stage in the- oretical physics as microscopic components of M-theory, as the seeds of the AdS/CFT correspondence, as a branch of particle phenomenology, as the higher-dimensional pro- arXiv:1812.11658v2 [hep-th] 16 Jun 2019 genitors of black holes and, via the brane-world, as entire universes in their own right. Notwithstanding this early opposition, Nino Zichichi invited me to to talk about su- permembranes and eleven dimensions at the 1987 School on Subnuclear Physics and has continued to keep Erice on the brane ever since. Here I provide a distillation of my Erice brane lectures and some personal recollections. 1Based on lectures at the International Schools of Subnuclear Physics 1987-2017 and the International Symposium 60 Years of Subnuclear Physics at Bologna, University of Bologna, November 2018. Contents 1 Introduction 5 1.1 Geneva and Erice: a tale of two cities . 5 1.2 Co-authors . 9 1.3 Nomenclature . 9 2 1987 Not the Standard Superstring Review 10 2.1 Vacuum degeneracy and the multiverse . 11 2.2 Supermembranes .
    [Show full text]