Chinese Fengyun Meteorological Satellites and Their Contributions To

Total Page:16

File Type:pdf, Size:1020Kb

Chinese Fengyun Meteorological Satellites and Their Contributions To Global Satellite Programs and Requirements for Radiative Transfer Models Peng Zhang Co-chair of CGMS WG III Co-chair of ITWG IIFS [email protected] National Satellite Meteorology Center (NSMC) China Meteorological Administration (CMA) Outline Satellite and NWP RTM for Satellite Data Assimilation Global Satellite Program Issues to be Discussed April 29- May 2, 2019, Tianjin National Satellite Meteorological Center ,CMA 1. Satellite and NWP Retrospect 1896, Kite meteorological instrument, Weather Bureau of US 1940s, Radiosonde observation, US 1943, Airplane-based Typhoon eye detection, US Air Force 1950s, NWP and high performance electronic computer (global forecast field required) 1940s, Rocket with camera (the first image from space) 1957, Sputnik (the first man-made satellite, former Soviet Union) 1959, Vanguard 2 (the first meteorological instrument, US) 1959, Explorer 7 (the first successful meteorological instrument, US) 1960, TIROS-1 (the first meteorological satellite, US) May 1, 2019 International Workshop on RTM 3 The first image from TIROS-1 May 1, 2019 International Workshop on RTM 4 Courtesy of E. Källén AMSU, AIRS, IASI, CrIS/ATMS ~210km ~63km ~39km ~16km~8-10km May 1, 2019 International Workshop on RTM 5 201822 Super Typhoon Mangkhut May 1, 2019 International Workshop on RTM 6 2. RTM for Satellite Data Assimilation Assimilation of satellite radiances Courtesy of Roger Saunders Observation space Observations O or yo Quality Bias Forecast observations B control (Forward modelled TBs) O-B Ob correction H(X) increments Observation operator H Adjoint of observation (Radiative transfer model + operator H map to observation space) Map back to model space Profile Adjusted model increments Background fields NWP forecast Analysis X May 1, 2019 NWP modelInternational space Workshop on RTM X Forecast7 RTM in General Meteorological Radiance Parameters P T T d Atmosphere Cloud Surface May 1, 2019 International Workshop on RTM 8 0 Tp(,) R B( ) T + B ( ( p )) u dp ss, p ps p s Tp*(,) +(1 − )T B ( ( p )) d dp s, 0 p T T( p , ) F cos +s, s sun 0, sun Energy balance on the Earth: The Solar heats the Earth c B (T) = 1,i The Earth emits the energy i c exp( 2,i −1) ai + bi T May 1, 2019 International Workshop on RTM 9 RTM Solver Mathematical methods in which the atmospheric radiation transfer differential equation is solved directly discrete coordinate algorithm DISORT, SCIATRAN, LIDORT, VLIDORT Physical methods based on the physical process of atmospheric radiation transferred in the atmosphere successive scattering method 6S Double adding method CRTM Monte Carlo method which is based on the physical statistics of photo scattering May 1, 2019 International Workshop on RTM 10 Transmittance Matrix R1, R2, R3... Optical depths T(p) q(p) O3(p) P(1) c −di, j i, j = e P(n) Ts, qs, Ps, s Courtesy of Roger Saunders May 1, 2019 International Workshop on RTM 11 2. Active All-sky assimilation 1. Microwave radar 6. Earth 5. Solar T-sounding low- high-freq. 3. Sub- 4. Infrared radiation mm budget Cloud Cloud Cloud particles, ice fraction, lighter water cloud top precip. Ice particle height, size, multiple shape, layers orientation Vertically Larger Vertically resolved frozen resolved particles, particle size Cloud and shape Size of particle Cloud water size and liquid cloud number water particles 9. Lightning Melting particles Cloud Sub-FOV Rain, cover heterogen including eity & particle Courtesy of Steve English structure size 7. Rain gauge 8. Ground radar May 1, 2019 International Workshop on RTM 12 RTTOV & CRTM Assimilation of TOVS top-of-atmosphere radiance began operational in the ECMWF NWP model in early 1990’s, and accurate radiative transfer model started to be important. CRTM has a long scientific heritage beginning in mid 1970’s with the work of Larry M. McMilling and Henry E. Fleming, and it is started to be sustainable in 2005 by NOAA. Latest version is V2.3. RTTOV first coded in the beginning of the 1990’s by John Eyre and now is supported by NWP Satellite Application Facilities. Latest version is V12.3 RTTOV is operational at ECMWF, UK Met-Office, Meteo-France, JMA, DWD, CMA and many other national weather services center; CRTM is operational at NCEP. May 1, 2019 International Workshop on RTM 13 Model provide ⚫ Satellite radiance simulation model: 푅 = 퐹(푋) ⚫ Tangent-linear model: 훿푅 = (휕퐹/휕푋)휕푋 ⚫ Adjoint model: 훿∗푋 = (휕퐹/휕푋)푇훿∗푅 ⚫ K-Matrix (Jacobian) model: 휕퐹/휕푋 ⚫ Covering Microwave and infrared sensors May 1, 2019 International Workshop on RTM 14 Fast RT model applications Assimilation of satellite radiance for NWP and reanalysis; Physical retrieval of temperature, water vapor, ozone profiles etc from satellite measurements; Satellite radiance observation monitoring; Simulate satellite imagery from NWP model fields; Studies of new satellite sensors … May 1, 2019 International Workshop on RTM 15 3. Global Satellite Program Important Component of WMO Space Program reliable and sustained observation in operation open data policy to free access May 1, 2019 International Workshop on RTM 16 120 Number of satellite data products operationally monitored at ECMWF (Weather and Composition configurations) 100 90s: mostly 00s: mostly US + 10s: Also Chinese + other US satellites European Asia satellites 80 5 more instruments per year 60 Courtesy of Steve English 40 20 0 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 POES Suomi-NPP JPSS Metop FY3 CHAMP GRACE COSMIC COSMIC-2 CNOFS SAC-C TERRASAR-X TANDEM-X DMSP TRMM Windsat GCOM-W/C GPM Megha Tropiques AQUA AURA TERRA ERS-1/2 QuikSCAT Oceansat RapidSCAT HY2 ENVISAT JASON Saral/Altika Cryosat Meteosat GOES Himawari FY2+4 COMS1 INSAT-3D SMOS SMAP EarthCARE ADM Aeolus GOSAT May 1, 2019 International Workshop on RTM 17 Sentinel 3 Sentinel 5p OCO-2 NOAA’s Observational Paradigm Has Been: Two Orbits, One Mission Polar-orbiting Operational Geostationary Operational Environmental Satellites Environmental Satellites (POES) (GOES) Operating since 1970 Operating since 1975 N N S S Primarily source of synoptic, Primarily source of near real time global observations feeding observations for nowcasting and Numerical Weather Models and imaging of severe weather events forecasts S-NPP image of North America Courtesy of Mitch Goldberg Department of Commerce // National Oceanic and Atmospheric Administration // 18 GOES-R Series Payload Capability GOES-R Series Instruments Measurements & Products Vendor Provides Earth weather, climate, ABI – Advanced Baseline ocean, and environment imagery, Harris Imager 4x spatial resolution, 5x faster Observing - GLM – Geostationary Maps in-cloud and cloud-to- Lockheed Lightning Mapper ground lightning activity Martin Earth SEISS – Space Monitors proton, electron, and ATC Environment In-Situ Suite heavy ion fluxes Measures space environment Lockheed Magnetometer magnetic field Martin EXIS – Extreme Ultraviolet Observing - Monitors solar flares and solar and X-Ray Irradiance LASP variations Sensors Solar Observes coronal holes, solar SUVI – Solar Ultraviolet Lockheed flares, and coronal mass Imager Martin ejections Department of Commerce // National Oceanic and Atmospheric Administration // 19 GOES Flyout Chart https://www.nesdis.noaa.gov/content/our-satellites Department of Commerce // National Oceanic and Atmospheric Administration // 20 Improving Forecast Accuracy & Timeliness JPSS satellites: ▪ Circle the Earth from pole-to-pole and cross the equator 14 times daily in the afternoon orbit— providing full global coverage twice a day. ▪ Provide critical data to the numerical forecast models that produce 3- to 7-day mid-range forecasts. ▪ Provide support for zero to 3-day operational forecasting in Polar Regions Department of Commerce // National Oceanic and Atmospheric Administration // 21 JPSS Payload Capability JPSS Instruments Measurements & Products Vendor ATMS – Advanced Technology Microwave Sounder High vertical resolution temperature NGES and water vapor information critical for forecasting extreme weather events, 5 CrIS – Cross-track Infrared to 7 days in advance Sounder Harris Critical Imagery products, including VIIRS – Visible Infrared Imaging snow/ice cover, clouds, fog, aerosols, Raytheon Radiometer Suite fire smoke plume, vegetation health, phytoplankton abundance/chlorophyll Ozone spectrometers for monitoring OMPS – Ozone Mapping Profiler Ball ozone hole health, recovery of Suite (Nadir Mapper, Nadir Aerospac stratospheric ozone, and for UV index Profiler, Limb - S-NPP, JPSS-2+) e forecast CERES – Clouds and the Earth’s CERES – Radiant Energy System (S-NPP & Scanning radiometer that supports NGAS JPSS-1) studies of Earth Radiation New procurement (JPSS-3, 4) Department of Commerce // National Oceanic and Atmospheric Administration // 22 Polar Flyout Chart Department of Commerce // National Oceanic and Atmospheric Administration // 23 EUMETSAT Mission Planning YEAR... 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 METEOSAT SECOND GENERATION METEOSAT-8 Courtesy of Kenneth Holmland METEOSAT-9 METEOSAT-10 METEOSAT-11 METEOSAT THIRD GENERATION MTG-I-1 : IMAGERY MTG-S-1: SOUNDING EUMETSAT POLAR SYSTEM (EPS) MTG-I-2: IMAGERY METOP-A MTG-I-3: IMAGERY METOP-B MTG-S-2: SOUNDING METOP-C MTG-I-4: IMAGERY Mandatory Programmes EUMETSAT POLAR SYSTEM SECOND GENERATION (EPS-SG) METOP-SG A: SOUNDING AND IMAGERY METOP-SG B: MICROWAVE IMAGERY JASON (HIGH PRECISION OCEAN ALTIMETRY) JASON-2 JASON-3 Optional Programmes
Recommended publications
  • The Early Explorers by Andrew J
    The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I.
    [Show full text]
  • AATSR Frequently Asked Questions (FAQ)
    AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................
    [Show full text]
  • In Brief Modified to Increase Engine Reliability
    r bulletin 102 — may 2000 3rd Space Station ESA, together with a European industrial Element to be Launched consortium headed by DaimlerChrysler (D) and including Belgian, Dutch and French NASA and the Russian Aviation and partners, was responsible for the design, Space Agency (Rosaviakosmos) plan that development and delivery of the core data the next component of the International management system, which provides Space Station (ISS) – the Zvezda service Zvezda’s main computer. module – will be launched on 12 July from the Baikonur Cosmodrome in Kazakhstan. ESA also has a contract with Rosaviakosmos and RSC-Energia for Following a Joint Programme Review and performing system and interface a General Designers’ Review in Moscow, it integration tasks required for docking with was agreed that Zvezda (Russian for Zvezda by ESA’s Automated Transfer ‘star’) will be launched by a Proton rocket Vehicle (ATV), which will be used for ISS with the second and third stage engines re-boost and logistics support missions In Brief modified to increase engine reliability. from 2003 onwards. Through its ATV industrial consortium led by Aerospatiale Zvezda will provide the early living quarters Matra Lanceurs (F), ESA is also procuring for ISS crew, together with the life sup- some Russian hardware and software for port, electrical power distribution, data use with the ATV. management, flight control, and propul- sion systems for the ISS. On the scientific side, ESA has concluded contracts with Rosaviakosmos and RSC- Energia for the conduct of scientific experiments on Zvezda, including the Global Timing System (GTS) and a radiobiology experiment (called Matroshka) to monitor and analyse radiation doses in ISS crew.
    [Show full text]
  • Satellite Situation Report
    NASA Office of Public Affairs Satellite Situation Report VOLUME 17 NUMBER 6 DECEMBER 31, 1977 (NASA-TM-793t5) SATELLITE SITUATION~ BEPORT, N8-17131 VOLUME 17, NO. 6 (NASA) 114 F HC A06/mF A01 CSCL 05B Unclas G3/15 05059 Goddard Space Flight Center Greenbelt, Maryland NOTICE .THIS DOCUMENT HAS'BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS' ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. OFFICE OF PUBLIC AFFAIRS GCDDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VOLUME 17 NO. 6 DECEMBER 31, 1977 SATELLITE SITUATION REPORT THIS REPORT IS PUBLIShED AND DISTRIBUTED BY THE OFFICE OF PUBLIC AFFAIRS, GSFC. GODPH DRgP2 FE I T ERETAO5MUJS E SMITHSONIAN ASTRCPHYSICAL OBSERVATORY. SPACEFLIGHT TRACKING AND DATA NETWORK. NOTE: The Satellite Situation Report dated October 31, 1977, contained an entry in the "Objects Decayed Within the Reporting Period" that 1977 042P, object number 10349, decayed on September 21, 1977. That entry was in error. The object is still in orbit. SPACE OBJECTS BOX SCORE OBJECTS IN ORBIT DECAYED OBJECTS AUSTRALIA I I CANACA 8 0 ESA 4 0 ESRO 1 9 FRANCE 54 26 FRANCE/FRG 2 0 FRG 9 3 INCIA 1 0 INDONESIA 2 0 INTERNATIONAL TELECOM- MUNICATIONS SATELLITE ORGANIZATION (ITSO) 22 0 ITALY 1 4 JAPAN 27 0 NATC 4 0 NETHERLANDS 0 4 PRC 6 14 SPAIN 1 0 UK 11 4 US 2928 1523 USSR 1439 4456 TOTAL 4E21 6044 INTER- CBJECTS IN ORIT NATIONAL CATALOG PERIOD INCLI- APOGEE PERIGEE TQANSMITTTNG DESIGNATION NAME NUMBER SOURCE LAUNCH MINUTES NATION KM.
    [Show full text]
  • Windows 7 Operating Guide
    Welcome to Windows 7 1 1 You told us what you wanted. We listened. This Windows® 7 Product Guide highlights the new and improved features that will help deliver the one thing you said you wanted the most: Your PC, simplified. 3 3 Contents INTRODUCTION TO WINDOWS 7 6 DESIGNING WINDOWS 7 8 Market Trends that Inspired Windows 7 9 WINDOWS 7 EDITIONS 10 Windows 7 Starter 11 Windows 7 Home Basic 11 Windows 7 Home Premium 12 Windows 7 Professional 12 Windows 7 Enterprise / Windows 7 Ultimate 13 Windows Anytime Upgrade 14 Microsoft Desktop Optimization Pack 14 Windows 7 Editions Comparison 15 GETTING STARTED WITH WINDOWS 7 16 Upgrading a PC to Windows 7 16 WHAT’S NEW IN WINDOWS 7 20 Top Features for You 20 Top Features for IT Professionals 22 Application and Device Compatibility 23 WINDOWS 7 FOR YOU 24 WINDOWS 7 FOR YOU: SIMPLIFIES EVERYDAY TASKS 28 Simple to Navigate 28 Easier to Find Things 35 Easy to Browse the Web 38 Easy to Connect PCs and Manage Devices 41 Easy to Communicate and Share 47 WINDOWS 7 FOR YOU: WORKS THE WAY YOU WANT 50 Speed, Reliability, and Responsiveness 50 More Secure 55 Compatible with You 62 Better Troubleshooting and Problem Solving 66 WINDOWS 7 FOR YOU: MAKES NEW THINGS POSSIBLE 70 Media the Way You Want It 70 Work Anywhere 81 New Ways to Engage 84 INTRODUCTION TO WINDOWS 7 6 WINDOWS 7 FOR IT PROFESSIONALS 88 DESIGNING WINDOWS 7 8 WINDOWS 7 FOR IT PROFESSIONALS: Market Trends that Inspired Windows 7 9 MAKE PEOPLE PRODUCTIVE ANYWHERE 92 WINDOWS 7 EDITIONS 10 Remove Barriers to Information 92 Windows 7 Starter 11 Access
    [Show full text]
  • Generation of GOES-16 True Color Imagery Without a Green Band
    Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built.
    [Show full text]
  • FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
    Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Sentinel-1A Launch
    SENTINEL-1A LAUNCH Arianespace’s seventh Soyuz launch from the Guiana Space Center will orbit Sentinel-1A, the first satellite in Europe’s Earth observation program, Copernicus. The European Space Agency (ESA) chose Thales Alenia Space to design, develop and build the satellite, as well as perform related tests. Copernicus is the new name for the European program previously known as GMES (Global Monitoring for Environment and Security), and is the European Commission’s second major space program, following Galileo. Copernicus is designed to give Europe continuous, independent and reliable access to Earth observation data. With the Soyuz, Ariane 5 and Vega launchers at the Guiana Space Center (CSG), Arianespace is the only launch services provider in the world capable of launching all types of payloads into all orbits, from the smallest to the largest geostationary satellites, from satellite clusters for constellations to cargo missions for the International Space Station (ISS). Arianespace sets the launch services standard for all operators, whether commercial or governmental, and guarantees access to space for scientific missions. Sentinel-1A is the 50th satellite with an Earth observation payload to be launched by Arianespace. Arianespace has seven more Earth observation missions in its order book, including four commercial missions (signed in 2013 and 2014). The Copernicus program is designed to give Europe complete independence in the acquisition and management of environmental data concerning our planet. ESA’s Sentinel programs comprise five satellite families: Sentinel-1, to provide continuity for radar data from ERS and Envisat. Sentinel-2 and Sentinel-3, dedicated to the observation of the Earth and its oceans.
    [Show full text]
  • The Progress of Fengyun Satellite Program and Its Applications
    The Progress of Fengyun Satellite Program and Its Applications Qifeng LU National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA) United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals Outline Fengyun Program Overview Current Missions and Services Latest Progress Future Programs National Satellite Meteorological Center ,CMA 1. Fengyun Program Overview Chinese FENGYUN Meteorological Satellites Polar System Geostationary System First Generation First FY-1 A, B, C, D Generation FY-2 A, B, C, D, E, F, G, H Second Second Generation Generation FY-3 A, B, C, D FY-4 A FY-3E, F, G planned until 2025 FY-4B, C, D planned until 2025 2019/5/3 United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals 3 Launched Satellites Since Jan. 1969, China began to develop his own meteorological Satellite Leo Launch Data Geo Launch Data FY-1A Sept. 7, 1988 FY-2A Jun. 10, 1997 FY-1B Sept. 3, 1990 FY-2B Jun. 25, 2000 FY-1C May 10, 1999 FY-2C Oct. 18, 2004 FY-1D May 15, 2002 FY-2D Dec. 8, 2006 FY-3A May 27, 2008 FY-2E Dec. 23, 2008 FY-3B Nov. 5, 2010 FY-2F Jan. 13, 2012 FY-3C Sept. 23, 2013 FY-2G Dec. 31, 2014 FY-3D Nov. 15, 2017 FY-4A Dec. 11, 2016 FY-2H Jun. 5, 2018 Overall Development Strategy (4 stages): 1) 1970 - 1990: Conducting satellite research and development 2) 1990 - 2000: Implementing transition from R&D to operational 3) 2000 - 2010: Implementing transition from 1st generation to 2nd generation 4) 2010 - 2020: Pursuing accuracy and precision of satellite measurements 2019/5/3 United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals 4 International User Community Global Data Regional Data Kangerlussu Svalbard aq Lannion MaspalomaAthens s FY-3C sounding data have been assimilated into CMA GRAPES, ECMWF, EUMETSAT Advanced UK NWP model operationally.
    [Show full text]
  • Nanosatellite
    EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE DI LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE DEPARTEMENT DE MICROTECHNIQUE INSTITUT DE SYSTEMES ROBOTIQUES ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE TRAVAIL PRATIQUE DE DIPLOME Nanosatellite Thomas Estier Professeur : R. Siegwart Février 1999 DMT–ISR–ASL Résumé de travail de diplôme 19 Février 1999 Nanosatellite Thomas Estier, section de Microtechnique Assistant(s): R. Siegwart, M. Wiesendanger Professeur: R. Siegwart La réduction des coûts dans le domaine spatial est devenue ces vingt dernières années un enjeu majeur. Cet objectif est réalisé principalement grâce à la diminution des temps de développement et à la miniaturisation des vaisseaux spatiaux. Ainsi, l'énergie à fournir est bien moindre pour le lancement qui représente une part importante du budget de fonctionnement. Dans le cas des satellites, on peut constater une accélération de cette tendance sur les dix dernières années. Il est même apparu des WebSat : concept de nanosatellite destiné à la réalisations de satellites dont la masse est diffusion d'images terrestres en temps réel comprise entre 1 et 10 kilogrammes: les sur Internet nanosatellites. une étude de l'environnement orbital ainsi Ainsi, petit à petit, l’ingénierie spatiale se qu'à un catalogue des solutions rapproche des domaines d’expertise de la technologiques et des nanosatellites déjà microtechnique. Il est donc naturel de produits. s’interroger sur les avantages que pourraient Durant la seconde phase de ce travail, une apporter, d'un côté comme de l'autre, un recherche systématique d'applications rapprochement entre ces disciplines. potentielles de nanosatellites a été effectuée Ce travail s'est déroulé en trois phases et deux concepts basés sur une même successives : architecture ont été proposés.
    [Show full text]
  • Accesso Autonomo Ai Servizi Spaziali
    Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag.
    [Show full text]