Clues to Regulation of Spermatogenic Development☆

Total Page:16

File Type:pdf, Size:1020Kb

Clues to Regulation of Spermatogenic Development☆ View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1813 (2011) 1668–1688 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Expression of nucleocytoplasmic transport machinery: Clues to regulation of spermatogenic development☆ Andrew T. Major a,c, Penny A.F. Whiley b,c, Kate L. Loveland a,b,c,⁎ a Department of Anatomy and Developmental Biology, Monash University, Australia b Department of Biochemistry and Molecular Biology, Monash University, Australia c The ARC Centre of Excellence in Biotechnology and Development, Australia article info abstract Article history: Spermatogenesis is one example of a developmental process which requires tight control of gene expression Received 27 August 2010 to achieve normal growth and sustain function. This review is based on the principle that events in Received in revised form 22 February 2011 spermatogenesis are controlled by changes in the distribution of proteins between the nuclear and Accepted 11 March 2011 cytoplasmic compartments. Through analysis of the regulated production of nucleocytoplasmic transport Available online 17 March 2011 machinery in mammalian spermatogenesis, this review addresses the concept that access to the nucleus is tightly controlled to enable and prevent differentiation. A broad review of nuclear transport components is Keywords: Spermatogenesis presented, outlining the different categories of machinery required for import, export and non-nuclear Testis functions. In addition, the complexity of nomenclature is addressed by the provision of a concise yet Importin comprehensive listing of information that will aid in comparative studies of different transport proteins and Exportin the genes which encode them. We review a suite of existing transcriptional analyses which identify common Karyopherin and distinct patterns of transport machinery expression, showing how these can be linked with key events in Nuclear transport spermatogenic development. The additional importance of this for human fertility is considered, in light of data that identify which importin and nuclear transport machinery components are present in testicular cancer specimens, while also providing an indication of how their presence (and absence) may be considered as potential mediators of oncogenesis. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import. © 2011 Published by Elsevier B.V. 1. Introduction: Nucleocytoplasmic transport in the context affect transcription or perform other nuclear functions, they must of spermatogenesis utilise importin-mediated nuclear import pathways. This review examines the machinery that controls nucleocyto- 1.1. What is an importin/exportin? plasmic transport in the context of mammalian spermatogenesis. Spermatogenesis is the process by which mature spermatozoa form Central to nucleocytoplasmic transport are the karyopherin family of from spermatogonial stem cells within the testis. Its successful proteins. These ferry cargoes in and out of the eukaryotic cell nucleus completion is dependent on successive division and differentiation and consists of two fundamentally distinct groups, karyopherin αsand steps which require many changes in gene expression; these are karyopherin βs [3–6]. Further categorisation reflects their functions in coordinated by a plethora of transcription and other factors expressed nuclear import (termed importins) and export (exportins). Because the in the testis [1,2]. For these proteins to access the nucleus, and thereby karyopherin αs are all importins, they are often termed importin αs, and the two terms may be used interchangeably. In contrast, the karyopherin βs have roles in nuclear import and export, and this functional distinction usually forms the basis for naming them as Abbreviations: NE, Nuclear envelope; NPC, Nuclear pore complex; NUPs, Nucleo- importin βs and exportins, respectively [3–5]. This separation may be porins; NLS, Nuclear localisation signal; cNLS, Classical nuclear localisation signal; NES, β Nuclear export signal; IBB, Importin beta binding; RAN-GTP, RAN, in its GTP bound inappropriate, as certain karyopherin s are now understood to bind form; RAN-GDP, RAN, in its GDP bound form; SEM, Standard error of the mean; GEO, distinct cargo sets for both import and export [3,7,8]. Gene expression omnibus; TGFβ, Transforming growth factor beta; miRNAs, Micro Each of the more than twenty karyopherin proteins encoded within RNAs; SRY, Sex determining region on the Y chromosome; LMB, Leptomycin B the mouse and human genomes binds a different subset of cargo proteins ☆ This article is part of a Special Issue entitled: Regulation of Signaling and Cellular which contain nuclear localisation signal(s) (NLS) or nuclear export Fate through Modulation of Nuclear Protein Import. ⁎ Corresponding author at: Building 77, Wellington Road, Monash University, signal(s) (NES) [9,10]. Some cargoes can be transported by several Clayton, Victoria, Australia 3800, Tel.: +61 3 99029337 Fax: +61 3 99029500. karyopherins, while others appear to require one specifickaryopherinfor 0167-4889/$ – see front matter © 2011 Published by Elsevier B.V. doi:10.1016/j.bbamcr.2011.03.008 A.T. Major et al. / Biochimica et Biophysica Acta 1813 (2011) 1668–1688 1669 nuclear import or export. Regulated nuclear transport of key factors can facilitated and is typically mediated by a transport carrier (e.g. dramatically affect signalling outcomes and cell fate [11],consistentwith karyopherin). The NPC is comprised of around 30 different nucleo- the concept that the progressive increase in karyopherin numbers with porins (NUPs). Some NUPs contribute to the eight spoke symmetry of evolutionary complexity may enable greater diversity in signalling the NPC nuclear “basket” structure and to the filaments extending into outcomes, required for complex organ development [6,12]. the cytoplasm (Fig. 1) [21]. The FG-NUPs which localise along the inner surfaces of the NPC channel feature hydrophobic repeat 1.2. The contribution of regulated nuclear transport to development sequences, termed FG-repeats, which fill the channel [22]. These FG- NUPs form the barrier that blocks the passage of larger molecules and An early demonstration that regulated importin expression simultaneously provide binding sites for the proteins that mediate controls nuclear protein access and thereby mediates changes in active nuclear transport [22]. function relates to the Drosophila heat shock transcription factor Facilitated transport into the nucleus by importins requires a (HSF). In the early Drosophila embryo, HSF is abundant, but it is unable nuclear localisation signal (NLS) on the cargo protein. The principal to enter the nucleus and the embryo has no heat shock response [13]. feature of the classical NLS (cNLS) is a single stretch of basic amino This has been suggested to enable rapid growth even in the presence acids (monopartite cNLS) or two closely spaced stretches of basic of an environmental insult during early embryogenesis, and after amino acids (bipartite cNLS)[3]). These cNLSs are recognised by cycle 13 the synthesis of the Drosophila homologue of Kpna4 (an importin α(s), while the NLSs that importin β(s) recognise contain importin α) delivers HSF to the nucleus and the heat shock response is much greater variation [10,23,24]. Cargoes of exportin 1 (XPO1) subsequently acquired [13]. contain a nuclear export signal (NES) consisting of hydrophobic Thus, the core concept examined in this review is that to trigger residues, predominantly leucine [25], while different exportins the appropriate developmental changes throughout spermatogenesis, mediate nuclear export in a similar manner (discussed further in correct spatiotemporal production of both nuclear factors and Section 2.4) but may also recognise and export cargoes that do not appropriate importins/exportins is required [14,15]. It builds on contain this motif [26–30]. previous knowledge that importin α family members are differen- tially expressed in certain developmental processes and in specific 2.2. Nuclear import tissue types [16,17], particularly within the testis and brain [16]. This review describes what is currently known about expression of In general terms, active nuclear import is mediated in two different karyopherins and other nucleocytoplasmic transport machinery in ways by importins. During importin β-mediated nuclear import relation to functional changes required through the progressive (Fig. 1A), the NLS-containing cargo forms a transport complex when it events of spermatogenesis in humans and mice. binds importin β in the cytoplasm. Transient interactions between importin β and FG-NUPs mediate NPC docking and translocation of 1.3. The karyopherin calamity: a table of clarity the complex into the nucleus [22,31]. Within the nucleus, the guanine nucleotide binding protein RAN in its GTP bound form (RAN-GTP) The large number of karyopherins identified within the mouse and binds to importin β [4], dissociating the complex and releasing the human genomes, variations in assigned gene names and differences in cargo to perform nuclear action(s) (discussed further in Section 2.4) the number of genes present between these and other species all have [32]. led to some uncertainty regarding to which karyopherin(s) individual In contrast to the importin βs which mediate
Recommended publications
  • KPNA1 Antibody Cat
    KPNA1 Antibody Cat. No.: 5981 Western blot analysis of KPNA1 in Hela cell lysate with KPNA1 antibody at 1μg/mL. Immunocytochemistry of KPNA1 in HeLa cells with KPNA1 antibody at 2.5 μg/mL. Immunofluorescence of KPNA1 in K562 cells with KPNA1 antibody at 20 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) KPNA1 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human KPNA1. IMMUNOGEN: The immunogen is located within amino acids 30 - 80 of KPNA1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 30, 2021 1 https://www.prosci-inc.com/kpna1-antibody-5981.html KPNA1 antibody can be used for detection of KPNA1 by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunocytochemistry in human samples and Immunofluorescence in human samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate 2) Cat. No. 17-001 - HeLa Cell Slide 3) Cat. No. 17-004 - K-562 Cell Slide Properties PURIFICATION: KPNA1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: KPNA1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL KPNA1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year.
    [Show full text]
  • Toxicogenomics Article
    Toxicogenomics Article Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers Matthew S. Forrest,1 Qing Lan,2 Alan E. Hubbard,1 Luoping Zhang,1 Roel Vermeulen,2 Xin Zhao,1 Guilan Li,3 Yen-Ying Wu,1 Min Shen,2 Songnian Yin,3 Stephen J. Chanock,2 Nathaniel Rothman,2 and Martyn T. Smith1 1School of Public Health, University of California, Berkeley, California, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA; 3National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China were then ranked and selected for further exam- Benzene is an industrial chemical and component of gasoline that is an established cause of ination using several forms of statistical analysis. leukemia. To better understand the risk benzene poses, we examined the effect of benzene expo- We also specifically examined the expression sure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe- of all cytokine genes on the array under the factory workers with well-characterized occupational exposures using microarrays and real-time a priori hypothesis that these key genes polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a involved in immune function are likely to be comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six altered by benzene exposure (Aoyama 1986). exposed–control pairs was performed. A combination of robust multiarray analysis and ordering We then attempted to confirm the array find- of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error ings for the leading differentially expressed rate, was used to identify differentially expressed genes in a global analysis.
    [Show full text]
  • Nuclear Import Protein KPNA7 and Its Cargos Acta Universitatis Tamperensis 2346
    ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos ELISA Acta Universitatis Tamperensis 2346 ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology AUT 2346 AUT ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology ACADEMIC DISSERTATION To be presented, with the permission of the Faculty Council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F114 of the Arvo building, Arvo Ylpön katu 34, Tampere, on 9 February 2018, at 12 o’clock. UNIVERSITY OF TAMPERE ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology Acta Universitatis Tamperensis 2346 Tampere University Press Tampere 2018 ACADEMIC DISSERTATION University of Tampere, Faculty of Medicine and Life Sciences Finland Supervised by Reviewed by Professor Anne Kallioniemi Docent Pia Vahteristo University of Tampere University of Helsinki Finland Finland Docent Maria Vartiainen University of Helsinki Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2018 Tampere University Press and the author Cover design by Mikko Reinikka Acta Universitatis Tamperensis 2346 Acta Electronica Universitatis Tamperensis 1851 ISBN 978-952-03-0641-0 (print) ISBN 978-952-03-0642-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://tampub.uta.fi Suomen Yliopistopaino Oy – Juvenes Print Tampere 2018 441 729 Painotuote CONTENTS List of original communications ................................................................................................
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Diversification of Importin-Α Isoforms in Cellular Trafficking and Disease States
    Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Biology Department of Biochemistry and Molecular Biology Faculty Papers 2-15-2015 Diversification of importin-α isoforms in cellular trafficking and disease states. Ruth A. Pumroy Thomas Jefferson University, [email protected] Gino Cingolani Thomas Jefferson University, [email protected] Let us know how access to this document benefits ouy Follow this and additional works at: https://jdc.jefferson.edu/bmpfp Part of the Medical Biochemistry Commons Recommended Citation Pumroy, Ruth A. and Cingolani, Gino, "Diversification of importin-α isoforms in cellular trafficking and disease states." (2015). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 107. https://jdc.jefferson.edu/bmpfp/107 This Article is brought to you for free and open access by the Jefferson Digital Commons. The effeJ rson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The ommonC s is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The effeJ rson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptBiochem Author Manuscript J. Author manuscript; Author Manuscript available in PMC 2015 April 21. Published in final edited form as: Biochem J.
    [Show full text]
  • Proteomics of Lipid Accumulation and DGAT Inhibition in Hepg2 Liver Carcinoma Cells
    Proteomics of lipid accumulation and DGAT inhibition in HepG2 liver carcinoma cells. By Bhumika Bhatt-Wessel A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy In Cell and Molecular Biology. Victoria University of Wellington 2017. i ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death that aggravate the condition and cause disease progression. The aim of this project is to study the effects of lipid accumulation on the cells using proteomics approach to identify proteins involved in the disease progression. A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line, were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid accumulation on the proliferation of the cells was measured using an MTT cell proliferation assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4 times of control with 90% of cell proliferation capacity of the control cells.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Karyopherin Alpha 1 Regulates Satellite Cell Proliferation And
    Karyopherin Alpha 1 Regulates Satellite Cell Proliferation and Survival By Modulating Nuclear Import Hyojung Choo, Emory University Alicia Cutler, Emory University Franziska Rother, Max-Delbrück-Center for Molecular Medicine Michael Bader, Max-Delbrück-Center for Molecular Medicine Grace Pavlath, Emory University Journal Title: STEM CELLS Volume: Volume 34, Number 11 Publisher: AlphaMed Press | 2016-11-01, Pages 2784-2797 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1002/stem.2467 Permanent URL: https://pid.emory.edu/ark:/25593/s324r Final published version: http://dx.doi.org/10.1002/stem.2467 Copyright information: © 2016 AlphaMed Press Accessed September 23, 2021 10:27 AM EDT HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Stem Cells Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 June 01. Published in final edited form as: Stem Cells. 2016 November ; 34(11): 2784–2797. doi:10.1002/stem.2467. Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import Hyo-Jung Choo1,*, Alicia Cutler1,2, Franziska Rother3, Michael Bader3, and Grace K. Pavlath1,* 1Department of Pharmacology, Emory University, Atlanta, GA 30322, USA 2Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA 3Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany Abstract Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells.
    [Show full text]
  • Anti-KPNA1 (Aa 293-472) Polyclonal Antibody (DPABH-12265) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-KPNA1 (aa 293-472) polyclonal antibody (DPABH-12265) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non- classical NLS. Immunogen Recombinant fragment corresponding to Human SRP1 aa 293-472. (BC002374).Sequence: IDAGVCRRLVELLMHNDYKVVSPALRAVGNIVTGDDIQTQVILNCSALQS LLHLLSSPKESIKKEACWTISNITAGNRAQIQTVIDANIFPALISILQTA EFRTRKEAAWAITNATSGGSAEQIKYLVELGCIKPLCDLLTVMDSKIVQV ALNGLENILRLGEQEAKRNG Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Human Purification Immunogen affinity purified Conjugate Unconjugated Applications WB, IHC-P Format Liquid Size 100 μg Buffer pH: 7.20; Constituents: 98% PBS, 1% BSA Preservative 0.01% Sodium Azide 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Storage Shipped at 4°C.
    [Show full text]
  • As a Risk Gene for Schizophrenia X Chen Et Al
    Molecular Psychiatry (2011) 16, 1117–1129 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5)asa risk gene for schizophrenia X Chen1,2, G Lee1, BS Maher1, AH Fanous1,3,4, J Chen1, Z Zhao5, A Guo5, E van den Oord1,6, PF Sullivan7, J Shi8, DF Levinson8, PV Gejman9, A Sanders9, J Duan9, MJ Owen10, NJ Craddock10, MC O’Donovan10, J Blackman10, D Lewis10, GK Kirov10, W Qin11, S Schwab11, D Wildenauer11, K Chowdari12, V Nimgaonkar12, RE Straub13, DR Weinberger13, FA O’Neill14, D Walsh15, M Bronstein16, A Darvasi16, T Lencz17, AK Malhotra17, D Rujescu18, I Giegling18, T Werge19, T Hansen19, A Ingason19, MM No¨ethen20, M Rietschel21,22, S Cichon20,23, S Djurovic24, OA Andreassen24, RM Cantor25, R Ophoff 25,26, A Corvin27, DW Morris27, M Gill27, CN Pato28, MT Pato28, A Macedo29, HMD Gurling30, A McQuillin30, J Pimm30, C Hultman31, P Lichtenstein31, P Sklar32,33, SM Purcell32,33, E Scolnick32,33, D St Clair 34, DHR Blackwood35 and KS Kendler1,2 and the GROUP investigators, the International Schizophrenia Consortium36 1Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; 2Department of Molecular and Human Genetics, Virginia Commonwealth University, Richmond, VA, USA; 3Washington VA Medical Center, Washington, DC, USA; 4Department of Psychiatry, Georgetown University School of Medicine, Washington, DC, USA; 5Departments
    [Show full text]
  • Nuclear Import of Prototype Foamy Virus Transactivator Bel1 Is Mediated by KPNA1, KPNA6 and KPNA7
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 38: 399-406, 2016 Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7 JIHUI DUAN, ZHIQIN TANG, HONG MU and GUOJUN ZHANG Clinical Laboratory, Tianjin First Center Hospital, Tianjin 300192, P.R. China Received October 9, 2015; Accepted May 31, 2016 DOI: 10.3892/ijmm.2016.2635 Abstract. Bel1, a transactivator of the prototype foamy PFV promoters, LTR and IP (7-9). Similar to most typical virus (PFV), plays pivotal roles in the replication of PFV. transcriptional activators, nuclear localization is required for Previous studies have demonstrated that Bel1 bears a nuclear the transactivation activity of Bel1 (10). Bel1 bears a putative localization signal (NLS); however, its amino acid sequence nuclear localization signal (NLS) in the central highly basic remains unclear and the corresponding adaptor importins have region (11,12). Earlier studies have indicated that peptide 211-225 not yet been identified. In this study, we inserted various frag- and/or 209-226 are necessary and sufficient for Bel1 nuclear ments of Bel1 into an EGFP-GST fusion protein and investigated localization (13-15). Later studies demonstrated that another their subcellular localization by fluorescence microscopy. We two basic amino acids, R199H200, also regulate Bel1 nuclear found that the 215PRQKRPR221 fragment, which accords with localization, which suggests that Bel1 carries a bipartite NLS the consensus sequence K(K/R)X(K/R) of the monopartite consisting of residues 199-200 and residues 211-223 (10,16). NLS, directed the nuclear translocation of Bel1. Point mutation However, Ma et al further found that residues R221R222R223, experiments revealed that K218, R219 and R221 were essential for but not R199H200, are essential for the nuclear distribution of the nuclear localization of Bel1.
    [Show full text]