All Sepkoski Genera

Total Page:16

File Type:pdf, Size:1020Kb

All Sepkoski Genera All Sepkoski Genera 6000 lower curve for short−lived (<45 Myr) genera (1) 5000 4000 3000 2000 Number of Genera 1000 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) Radiolarians 140 (2) 120 100 80 60 Number of Genera 40 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Radiolarians of Order Spumellaria 70 (3) 60 50 40 30 Number of Genera 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Radiolarians of Order Nassellaria 60 (4) 50 40 30 20 Number of Genera 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Foraminifera & Chitonozoa 400 (5) 350 300 250 200 150 Number of Genera 100 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Foraminifera 400 (6) 350 300 250 200 150 Number of Genera 100 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Porifera 250 (7) 200 150 100 Number of Genera 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Class Demospongia 60 (8) 50 40 30 20 Number of Genera 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Order Lithistida 45 (9) 40 35 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Order Stromatoporoidea 50 (10) 45 40 35 30 25 20 Number of Genera 15 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Class Calcarea 35 (11) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Class Hexactinellida 30 (12) 25 20 15 10 Number of Genera 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Class Regulares 160 (13) 140 120 100 80 60 Number of Genera 40 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Porifera of Order Ajacicyathida 140 (14) 120 100 80 60 Number of Genera 40 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Cnidaria 160 (15) 140 120 100 80 60 Number of Genera 40 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Corals 150 (16) 100 50 Number of Genera 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Corals of Order Tabulata 60 (17) 50 40 30 20 Number of Genera 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Corals of Order Rugosa 100 (18) 90 80 70 60 50 40 Number of Genera 30 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Corals of Order Scleractina 120 (19) 100 80 60 40 Number of Genera 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Annelida (Segmented Worms) 50 (20) 45 40 35 30 25 20 Number of Genera 15 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Annelids of Class Polychaeta 50 (21) 45 40 35 30 25 20 Number of Genera 15 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Problematica 50 (22) 45 40 35 30 25 20 Number of Genera 15 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Hyolitha 45 (23) 40 35 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Phylum Mollusca 2000 (24) 1800 1600 1400 1200 1000 800 Number of Genera 600 400 200 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Gastropods 1200 (25) 1000 800 600 400 Number of Genera 200 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Gastropods of Order Archaeogastropoda 180 (26) 160 140 120 100 80 60 Number of Genera 40 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Gastropods of Order Neotaenioglossa 450 (27) 400 350 300 250 200 150 Number of Genera 100 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Gastropods of Order Neogastropoda 500 (28) 450 400 350 300 250 200 Number of Genera 150 100 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Molluscs of Class Opisthobranchia 120 (29) 100 80 60 40 Number of Genera 20 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Molluscs of Class Opisthobranchia, Order Cephalaspida 35 (30) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Molluscs of Class Opisthobranchia, Order Heterostrophia 70 (31) 60 50 40 30 Number of Genera 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods 100 (32) 90 80 70 60 50 40 Number of Genera 30 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Ammonoids 80 (33) 70 60 50 40 30 Number of Genera 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Ellesmerocerida 10 (34) 9 8 7 6 5 4 Number of Genera 3 2 1 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Orthocerida 35 (35) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Endocerida 35 (36) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Discosorida 12 (37) 10 8 6 4 Number of Genera 2 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Oncocerida 20 (38) 18 16 14 12 10 8 Number of Genera 6 4 2 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Nautilida 30 (39) 25 20 15 10 Number of Genera 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Anarcestida 15 (40) 10 5 Number of Genera 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Goniatitida 30 (41) 25 20 15 10 Number of Genera 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Cephalopods of Order Ceratitida 25 (42) 20 15 10 Number of Genera 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Ammonites 70 (43) 60 50 40 30 Number of Genera 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves 800 (44) 700 600 500 400 300 Number of Genera 200 100 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Nuculoida 35 (45) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Arcoida 60 (46) 50 40 30 20 Number of Genera 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Mytilioda 50 (47) 45 40 35 30 25 20 Number of Genera 15 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Pterioida 100 (48) 90 80 70 60 50 40 Number of Genera 30 20 10 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Trigonioida 35 (49) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Veneroida 450 (50) 400 350 300 250 200 150 Number of Genera 100 50 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Myoida 45 (51) 40 35 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Hippuritoida 45 (52) 40 35 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200 250 300 350 400 450 500 Age (Ma) no singletons, ages at stage level Bivalves of Order Pholadomyoida 35 (53) 30 25 20 15 Number of Genera 10 5 0 T K J Tr P C D S O Cm 0 50 100 150 200
Recommended publications
  • Early Paleozoic Life & Extinctions (Part 1)
    NJU Course Extinctions: Past, Present & Future Prof. Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Extinctions: Past, Present & Future Extinctions: Past, Present & Future Course Syllabus (Revised) Section Week Title Introduction 1 Course Introduction, Intro. To Extinction Introduction 2 History of Extinction Studies Introduction 3 Evolution, Fossils, Time & Extinction Precambrian Extinctions 4 Origin of Life & Precambrian Extionctions Paleozoic Extinctions 5 Early Paleozoic World & Extinctions Paleozoic Extinctions 6 Middle Paleozoic World & Extinctions Paleozoic Extinctions 7 Late Paleozoic World & Extinctions Assessment 8 Mid-Term Examination Mesozoic Extinctions 9 Triassic-Jurassic World & Extinctions Mesozoic Extinctions 10 Labor Day Holiday Cenozoic Extinctions 11 Cretaceous World & Extinctions Cenozoic Extinctions 12 Paleogene World & Extinctions Cenozoic Extinctions 13 Neogene World & Extinctions Modern Extinctions 14 Quaternary World & Extinctions Modern Extinctions 15 Modern World: Floras, Faunas & Environment Modern Extinctions 16 Modern World: Habitats & Organisms Assessment 17 Final Examination Early Paleozoic World, Life & Extinctions Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Early Paleozoic World, Life & Extinctions Objectives Understand the structure of the early Paleozoic world in terms of timescales, geography, environ- ments, and organisms. Understand the structure of early Paleozoic extinction events. Understand the major Paleozoic extinction drivers. Understand
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Cambrian Cephalopods
    BULLETIN 40 Cambrian Cephalopods BY ROUSSEAU H. FLOWER 1954 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS Ex OFFICIO The Honorable Edwin L. Mechem ...................... Governor of New Mexico Tom Wiley ......................................... Superintendent of Public Instruction APPOINTED MEMBERS Robert W. Botts ...................................................................... Albuquerque Holm 0. Bursum, Jr. ....................................................................... Socorro Thomas M. Cramer ........................................................................ Carlsbad Frank C. DiLuzio ..................................................................... Los Alamos A. A. Kemnitz ................................................................................... Hobbs Contents Page ABSTRACT ...................................................................................................... 1 FOREWORD ................................................................................................... 2 ACKNOWLEDGMENTS ............................................................................. 3 PREVIOUS REPORTS OF CAMBRIAN CEPHALOPODS ................ 4 ADEQUATELY KNOWN CAMBRIAN CEPHALOPODS, with a revision of the Plectronoceratidae ..........................................................7
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • 1540 Evans.Vp
    An early Silurian (Aeronian) cephalopod fauna from Kopet-Dagh, north-eastern Iran: including the earliest records of non-orthocerid cephalopods from the Silurian of Northern Gondwana DAVID H. EVANS, MANSOUREH GHOBADI POUR, LEONID E. POPOV & HADI JAHANGIR The cephalopod fauna from the Aeronian Qarebil Limestone of north-eastern Iran comprises the first comprehensive re- cord of early Silurian cephalopods from peri-Gondwana. Although consisting of relatively few taxa, the assemblage in- cludes members of the orders Oncocerida, Discosorida, Barrandeocerida and Orthocerida. Coeval records of several of these taxa are from low palaeolatitude locations that include Laurentia, Siberia, Baltica and Avalonia, and are otherwise unknown from peri-Gondwana until later in the Silurian. The cephalopod assemblage occurs in cephalopod limestones that currently represent the oldest record of such limestones in the Silurian of the peri-Gondwana margin. The appear- ance of these cephalopods, together with the development of cephalopod limestones may be attributed to the relatively low latitudinal position of central Iran and Kopet-Dagh compared with that of the west Mediterranean sector during the Aeronian. This, combined with the continued post-glacial warming after the Hirnantian glaciation, facilitated the initia- tion of carbonate deposition and conditions suitable for the development of the cephalopod limestones whilst permitting the migration of cephalopod taxa, many of which were previously restricted to lower latitudes. • Key words: Llandovery, Aeronian, Cephalopoda, palaebiogeography, peri-Gondwana. EVANS, D.H., GHOBADI POUR, M., POPOV,L.E.&JAHANGIR, H. 2015. An Early Silurian (Aeronian) cephalopod fauna from Kopet-Dagh, north-eastern Iran: including the earliest records of non-orthocerid cephalopods from the Silurian of Northern Gondwana.
    [Show full text]
  • Main Morphological Events in the Evolution of Paleozoic Cephalopods I
    Stratigraphy and Geological Correlation, Vol. 2, No. 1, 1994, pp. 49 - 55. Translated from Stratigrafiya. Geologicheskaya Korrelyatsiya, Vol. 2, No. 1,1994, pp. 55 - 61. Original Russian Text Copyright © 1994 by Barskov, Bogoslovskaya, Zhuravleva, Kiselev, Kuzina, Leonova, Shimanskii, Yatskov. English Translation Copyright © 1994 by Interperiodica Publishing (Russia). Main Morphological Events in the Evolution of Paleozoic Cephalopods I. S. Barskov*, M. F. Bogoslovskaya*, F. A. Zhuravleva*, G. N. Kiselev**, L. F. Kuzina*, T. B. Leonova*, V. N. Shimanskii*, and S. V. Yatskov* institute of Paleontology, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117647 Russia **Department of Paleontology, St. Petersburg State University, 16-ya Liniya 29, St. Petersburg, 199178 Russia Received January 26,1993 Abstract - New morphological features in shell structure, which were the starting points of cephalopod diver­ sification into taxa of high ranks (subclasses, orders, superfamilies), are considered as phylogenetic events. Main morphological innovations in the evolution of nautiloid cephalopods; the formation of endosiphuncular and cameral deposits, shell coiling, truncation of the phragmocone’s apical end, and contracted aperture, which originated to make the relative shell positioning in the water more efficient. Changes in the lobe line structure and various types of complications in the primary lobes (ventral, umbonal, and lateral) were the most important morphological innovations in convolute ammonoids. The functional significance of these changes remains unclear, but recognition of equally significant changes in primary lobes requires a review of the Paleozoic Ammonoidea taxonomy at the suborder level. This paper is a continuation of a study whose first lation of the buoyancy process and to support in various results have been published (Barskov et al., 1993).
    [Show full text]
  • Ascocerid Cephalopods from the Hirnantian?–Llandovery Stages of the Southern Paraná Basin (Paraguay, South America): first Record from High Paleolatitudes
    Journal of Paleontology, page 1 of 11 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2018.59 Ascocerid cephalopods from the Hirnantian?–Llandovery stages of the southern Paraná Basin (Paraguay, South America): first record from high paleolatitudes M. Cichowolski,1,2 N.J. Uriz,3 M.B. Alfaro,3 and J.C. Galeano Inchausti4 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Área de Paleontología, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina 〈[email protected]〉 2CONICET-Universidad de Buenos Aires, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Buenos Aires, Argentina 3División Geología del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. 〈[email protected]〉, 〈[email protected]〉 4Ministerio de Obras Públicas y Comunicaciones de Paraguay, Asunción, Paraguay 〈[email protected]〉 Abstract.—Ascocerid cephalopods are described for the first time from high paleolatitudes of Gondwana. Studied material was collected from the Hirnantian?–Llandovery strata of the Eusebio Ayala and Vargas Peña formations, Paraná Basin, southeastern Paraguay. The specimens are poorly preserved and were questionably assigned to the sub- family Probillingsitinae Flower, 1941, being undetermined at genus and species rank because diagnostic characters are not visible. A particular feature seen in our material is the presence of both parts of the ascocerid conch (the juve- nile or cyrtocone and the mature or brevicone) joined together, which is a very rare condition in the known paleonto- logical record. The specimens are interpreted as at a subadult stage of development because fully grown ascocerids would have lost the juvenile shell.
    [Show full text]
  • Cephalopod Reproductive Strategies Derived from Embryonic Shell Size
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12341 Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa Vladimir Laptikhovsky1,∗, Svetlana Nikolaeva2,3,4 and Mikhail Rogov5 1Fisheries Division, Cefas, Lowestoft, NR33 0HT, U.K. 2Department of Earth Sciences Natural History Museum, London, SW7 5BD, U.K. 3Laboratory of Molluscs Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia 4Laboratory of Stratigraphy of Oil and Gas Bearing Reservoirs Kazan Federal University, Kazan, 420000, Russia 5Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow, 119017, Russia ABSTRACT An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small-egged taxa, as is also seen in simultaneously evolving fish taxa. Key words: embryonic shell, initial chamber, hatchling, egg size, Cephalopoda, Ammonoidea, reproductive strategy, Nautilida, Coleoidea.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • High-Level Classification of the Nautiloid Cephalopods: a Proposal for the Revision of the Treatise Part K
    Swiss Journal of Palaeontology (2019) 138:65–85 https://doi.org/10.1007/s13358-019-00186-4 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K 1 2 Andy H. King • David H. Evans Received: 4 November 2018 / Accepted: 13 February 2019 / Published online: 14 March 2019 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2019 Abstract High-level classification of the nautiloid cephalopods has been largely neglected since the publication of the Russian and American treatises in the early 1960s. Although there is broad general agreement amongst specialists regarding the status of nautiloid orders, there is no real consensus or consistent approach regarding higher ranks and an array of superorders utilising various morphological features has been proposed. With work now commencing on the revision of the Treatise Part K, there is an urgent need for a methodical and standardised approach to the high-level classification of the nautiloids. The scheme proposed here utilizes the form of muscle attachment scars as a diagnostic feature at subclass level; other features (including siphuncular structures and cameral deposits) are employed at ordinal level. We recognise five sub- classes of nautiloid cephalopods (Plectronoceratia, Multiceratia, Tarphyceratia nov., Orthoceratia, Nautilia) and 18 orders including the Order Rioceratida nov. which contains the new family Bactroceratidae. This scheme has the advantage of relative simplicity (it avoids the use of superorders) and presents a balanced approach which reflects the considerable morphological diversity and phylogenetic longevity of the nautiloids in comparison with the ammonoid and coleoid cephalopods.
    [Show full text]
  • Jahrbuch Der Geologischen Bundesanstalt
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1998 Band/Volume: 141 Autor(en)/Author(s): Bogolepova Olga K., Schönlaub Hans-Peter Artikel/Article: The First Nautiloid from the Upper Ordovician of the Carnic Alps (Austria) 21-24 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb. Geol. B.-A. ISSN 0016–7800 Band 141 Heft 1 S. 21–24 Wien, September 1998 The First Nautiloid from the Upper Ordovician of the Carnic Alps (Austria) OLGA K. BOGOLEPOVA & HANS PETER SCHÖNLAUB*) 3 Text-Figures Karnische Alpen Ordovizium Cephalopoden Österreichische Karte 1 : 50.000 Paläontologie Blatt 197 Paläogeographie Contents Zusammenfassung ....................................................................................................... 21 Abstract .................................................................................................................. 21 1. Introduction .............................................................................................................. 21 2. Regional Geology and Stratigraphy ........................................................................................ 22 3. Systematic Palaeontology ................................................................................................ 23 4. Conclusions .............................................................................................................
    [Show full text]
  • 8 International Symposium Cephalopods
    8th International Symposium Cephalopods – Present and Past August 30 – September 3, 2010 Abstracts Volume University of Burgundy & CNRS Dijon - France http://www.u-bourgogne.fr/cephalopods/ Honorary Committee Sigurd von Boletzky, DR CNRS - Banyuls-sur-Mer - France Raymond Enay, Prof. University of Lyon Lyon - France Didier Marchand, University of Burgundy Dijon - France Jacques Thierry, Prof. University of Burgundy Dijon - France Scientific committee Giambattista Bello, ARION, Mola di Bari - Italy Vyacheslav Bizikov, Russian Federal Research Institute of Marine Fisheries and Oceanography, Moscou - Russia Christian Klug, Universitaet Zuerich, Zurich - Switzerland Neil. H. Landman, American Museum of Natural History, New York - USA Pascal Neige, University of Burgundy, Dijon - France Isabelle Rouget, University Pierre & Marie Curie, Paris - France Kazushige Tanabe, University of Tokyo, Tokyo - Japan Margareth Yacobuci, Bowling Green State University, Bowling Green - USA Organizing committee Pascal Neige, University of Burgundy – France Isabelle Rouget, University Pierre and Marie Curie – France Alex Bauer, CNRS, University of Burgundy – France Arnaud Brayard, CNRS, University of Burgundy – France Guillaume Dera, University of Burgundy – France Jean-Louis Dommergues, CNRS, University of Burgundy – France Emmanuel Fara, University of Burgundy – France Myette Guiomar, Rserve Gologique de Haute-Provence Digne-les Bains, France Clotilde Hardy, University of Burgundy – France Isabella Kruta, MNHN – France Rémi Laffont, CNRS, University of Burgundy
    [Show full text]