Main Morphological Events in the Evolution of Paleozoic Cephalopods I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Paleozoic Life & Extinctions (Part 1)
NJU Course Extinctions: Past, Present & Future Prof. Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Extinctions: Past, Present & Future Extinctions: Past, Present & Future Course Syllabus (Revised) Section Week Title Introduction 1 Course Introduction, Intro. To Extinction Introduction 2 History of Extinction Studies Introduction 3 Evolution, Fossils, Time & Extinction Precambrian Extinctions 4 Origin of Life & Precambrian Extionctions Paleozoic Extinctions 5 Early Paleozoic World & Extinctions Paleozoic Extinctions 6 Middle Paleozoic World & Extinctions Paleozoic Extinctions 7 Late Paleozoic World & Extinctions Assessment 8 Mid-Term Examination Mesozoic Extinctions 9 Triassic-Jurassic World & Extinctions Mesozoic Extinctions 10 Labor Day Holiday Cenozoic Extinctions 11 Cretaceous World & Extinctions Cenozoic Extinctions 12 Paleogene World & Extinctions Cenozoic Extinctions 13 Neogene World & Extinctions Modern Extinctions 14 Quaternary World & Extinctions Modern Extinctions 15 Modern World: Floras, Faunas & Environment Modern Extinctions 16 Modern World: Habitats & Organisms Assessment 17 Final Examination Early Paleozoic World, Life & Extinctions Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Early Paleozoic World, Life & Extinctions Objectives Understand the structure of the early Paleozoic world in terms of timescales, geography, environ- ments, and organisms. Understand the structure of early Paleozoic extinction events. Understand the major Paleozoic extinction drivers. Understand -
Suture with Pointed Flank Lobe and ... -.: Palaeontologia Polonica
210 JERZY DZIK Genus Posttornoceras Wedekind, 1910 Type species: Posttornoceras balvei Wedekind, 1910 from the mid Famennian Platyclymenia annulata Zone of the Rhenisch Slate Mountains. Diagnosis. — Suture with pointed flank lobe and angular or pointed dorsolateral lobe. Remarks. — Becker (1993b) proposed Exotornoceras for the most primitive members of the lineage with a relatively shallow dorsolateral lobe. The difference seems too minor and continuity too apparent to make this taxonomical subdivision practical. Becker (2002) suggested that this lineage was rooted in Gundolficeras, which is supported by the data from the Holy Cross Mountains. The suture of Posttornoceras is similar to that of Sporadoceras, but these end−members of unrelated lin− eages differ rather significantly in the geometry of the septum (Becker 1993b; Korn 1999). In Posttornoceras the parts of the whorl in contact with the preceding whorl are much less extensive, the dorsolateral saddle is much shorter and of a somewhat angular appearance. This is obviously a reflection of the difference in the whorl expansion rate between the tornoceratids and cheiloceratids. Posttornoceras superstes (Wedekind, 1908) (Figs 154A and 159) Type horizon and locality: Early Famennian at Nehden−Schurbusch, Rhenish Slate Mountains (Becker 1993b). Diagnosis. — Suture with pointed tip of the flank lobe and roundedly angulate dorsolateral lobe. Remarks.—Gephyroceras niedzwiedzkii of Dybczyński (1913) from Sieklucki’s brickpit was repre− sented by a specimen (probably lost) significantly larger than those described by Becker (1993b). The differ− ence in proportions of suture seem to result from this ontogenetic difference, that is mostly from increase of the whorl compression with growth. Distribution. — Reworked at Sieklucki’s brickpit in Kielce. -
Nautiloid Shell Morphology
MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION -
Cambrian Cephalopods
BULLETIN 40 Cambrian Cephalopods BY ROUSSEAU H. FLOWER 1954 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS Ex OFFICIO The Honorable Edwin L. Mechem ...................... Governor of New Mexico Tom Wiley ......................................... Superintendent of Public Instruction APPOINTED MEMBERS Robert W. Botts ...................................................................... Albuquerque Holm 0. Bursum, Jr. ....................................................................... Socorro Thomas M. Cramer ........................................................................ Carlsbad Frank C. DiLuzio ..................................................................... Los Alamos A. A. Kemnitz ................................................................................... Hobbs Contents Page ABSTRACT ...................................................................................................... 1 FOREWORD ................................................................................................... 2 ACKNOWLEDGMENTS ............................................................................. 3 PREVIOUS REPORTS OF CAMBRIAN CEPHALOPODS ................ 4 ADEQUATELY KNOWN CAMBRIAN CEPHALOPODS, with a revision of the Plectronoceratidae ..........................................................7 -
Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance. -
Primitive Soft-Bodied Cephalopods from the Cambrian
ACCEPTED DRAFT Please note that this is not the final manuscript version. Links to the published manuscript, figures, and supplementary information can be found at http://individual.utoronto.ca/martinsmith/nectocaris.html doi: 10.1038/nature09068 Smith & Caron 2010, Page 1 Primitive soft-bodied cephalopods from the Cambrian Martin R. Smith 1, 2* & Jean-Bernard Caron 2, 1 1Departent of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Ontario, M5S 3G5, Canada 2Department of Palaeobiology, Royal Ontario Museum, 100 Queen ’s Park, Toronto, Ontario M5S 2C6, Canada *Author for correspondence The exquisite preservation of soft-bodied animals in Burgess Shale-type deposits provides important clues into the early evolution of body plans that emerged during the Cambrian explosion 1. Until now, such deposits have remained silent regarding the early evolution of extant molluscan lineages – in particular the cephalopods. Nautiloids, traditionally considered basal within the cephalopods, are generally depicted as evolving from a creeping Cambrian ancestor whose dorsal shell afforded protection and buoyancy 2. Whilst nautiloid-like shells occur from the Late Cambrian onwards, the fossil record provides little constraint on this model, or indeed on the early evolution of cephalopods. Here, we reinterpret the problematic Middle Cambrian animal Nectocaris pteryx 3, 4 as a primitive (i.e. stem-group), non-mineralized cephalopod, based on new material from the Burgess Shale. Together with Nectocaris, the problematic Lower Cambrian taxa Petalilium 5 and (probably) Vetustovermis 6, 7 form a distinctive clade, Nectocarididae, characterized by an open axial cavity with paired gills, wide lateral fins, a single pair of long, prehensile tentacles, a pair of non-faceted eyes on short stalks, and a large, flexible anterior funnel. -
Size Distribution of the Late Devonian Ammonoid Prolobites: Indication for Possible Mass Spawning Events
Swiss J Geosci (2010) 103:475–494 DOI 10.1007/s00015-010-0036-y Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events Sonny Alexander Walton • Dieter Korn • Christian Klug Received: 17 December 2009 / Accepted: 18 October 2010 / Published online: 15 December 2010 Ó Swiss Geological Society 2010 Abstract Worldwide, the ammonoid genus Prolobites is Abbreviations only known from a few localities, and from these fossil SMF Senckenberg Museum, Frankfurt a. M., Germany beds almost all of the specimens are adults as shown by the MB.C. Cephalopod collection of the Museum fu¨r presence of a terminal growth stage. This is in marked Naturkunde Berlin (the collections of Franz contrast to the co-occurring ammonoid genera such as Ademmer, Werner Bottke, and Harald Simon Sporadoceras, Prionoceras, and Platyclymenia. Size dis- are incorporated here) tribution of specimens of Prolobites from three studied localities show that, unlike in the co-occurring ammonoid species, most of the material belongs to adult individuals. The morphometric analysis of Prolobites delphinus Introduction (SANDBERGER &SANDBERGER 1851) demonstrates the intra- specific variability including variants with elliptical coiling The mid-Fammenian (Late Devonian) ammonoid genus and that dimorphism is not detectable. The Prolobites Prolobites is only known from a few localities worldwide, material shows close resemblance to spawning populations mainly in the Rhenish Mountains and the South Urals. of Recent coleoids such as the squid Todarodes filippovae Where it does occur, the majority of the specimens show a ADAM 1975. Possible mass spawning events are discussed terminal growth stage suggesting that these are adults. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Rendspi 1-Studies
Rendiconti della Società Paleontologica Italiana 3 (I) The Silurian of Sardinia volume in honour of Enrico Serpagli Edited by Carlo Corradini Annalisa Ferretti Petr Storch Società Paleontologica Italiana 2009 I Rendiconti della Società Paleontologica Italiana, 3 (1), 2009: 109-118 Silurian nautiloid cephalopods from Sardinia: the state of the art MAURIZIO GNOLI, PAOLO SERVENTI Maurizio Gnoli - Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, largo S. Eufemia 19, I- 41100 Modena (Italy); [email protected] Paolo Serventi - Dipartimento del Museo di Paleobiologia e dell’Orto Botanico, via Università 4, I-41100 Modena (Italy); [email protected] ABSTRACT - The complete faunal list of nautiloid cephalopods from the Silurian of Sardinia has been compiled herein. A history leading to the present state of knowledge on this fossil group, achieved after forty years of extensive study, is reviewed. A total of 61 species assigned to 38 genera are known from the Wenlock-Pridoli of southern Sardinia. The fauna strongly supports links with coeval associations of Bohemia and, to a lesser extent, with the Carnic Alps. KEY WORDS - Silurian, Sardinia, Cephalopods, Palaeogeography. INTRODUCTION This paper represents the nautiloid cephalopod sum up of more than forty years of scientific activity within the informal International Group on the Palaeozoic Palaeontology headed by Prof. Enrico Serpagli, who devoted most of his research to the Italian Palaeozoic outcrops mainly in two areas, the Carnic Alps and southern Sardinia. During these years, many field trips have been carried out in Sardinia allowing the collection of an enormous amount of samples studied in detail in their palaeontological (either taxonomic or biostratigraphical) content by Italian, German, English, Irish, Spanish, Swedish and Czech members of the research team. -
TRIASSIC AMMONOID RECOVERIES and Extincfions. E.T.Tozer
39g TRIASSIC AMMONOID RECOVERIES AND EXTINCfIONS. E.T.Tozer, Geological Survey of Canada, 100 West Pender Street, Vancouver, British Columbia, V6B IR8, Canada. Triassic ammonoids provide an excellent glimpse of faunal recovery after the extinctions at the P-T boundary. No other animals, with the possible exception of those represented by conodonts, provide so nearly a continuous faunal record with more than 40 different successive faunas easily distinguished. The problems introduced by Lazarus taxa are reduced although there are still gaps that make positive elucidation of some phylogenies difficult or impossible. The Triassic chronology used here is that of most DNAG volumes, except that Scythian, the only Triassic stage in the Lower Triassic in the Introductory volume is divided into four, as in volumes for Western and Arctic Canada. Succession of Triassic series and st(\ges is thus: Lower Triassic - Griesbachian, Dienerian, Smithian, Spathian; Middle Triassic - Anisian, Ladinian; Upper Triassic Carnian, Norian. Rhaetian of some authors is part or parts of this Upper Norian. How much of the Upper Norian has not been settled. In a 1980 census Triassic Ammonoidea were assigned to 3 Orders, Prolecanitida (3 genera); Ceratitida (427); Phylloceratida (15). In the Ceratitida virtually every kind of morphological character is represented. Shells range in shape from serpenticone to globose and oxycone, or heteromorph; in sculpture from smooth to ribbed and/or tuberculate. All kinds of sutures are developed. The large number of taxa are necessary to express the variation. The Permian-Triassic boundary was not a disaster for the ammonoids. Three groups cross the boundary, one of Prolecanitida (Episageceratidae), two of Ceratitida (Otocerataceae and Xenodiscaceae). -
The Phylogeny of Coleoid Cephalopods Inferred from Molecular Evolutionary Analyses of the Cytochrome C Oxidase I, Muscle Actin, and Cytoplasmic Actin Genes
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1998 The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes David Bruno Carlini College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Genetics Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Carlini, David Bruno, "The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes" (1998). Dissertations, Theses, and Masters Projects. Paper 1539616597. https://dx.doi.org/doi:10.25773/v5-3pyk-f023 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Minute Silurian Oncocerid Nautiloids with Unusual Colour Patterns
Minute Silurian oncocerid nautiloids with unusual colour patterns ŠTĚPÁN MANDA and VOJTĚCH TUREK Manda, Š. and Turek, V. 2009. Minute Silurian oncocerid nautiloids with unusual colour patterns. Acta Palaeontologica Polonica 54 (3): 503–512. DOI: 10.4202/app.2008.0062. A minute Silurian oncocerid Cyrtoceras pollux, from the Prague Basin is assigned here to the genus Pomerantsoceras.The only so far known species of this genus comes from the Upper Ordovician (Hirnantian) of Estonia. Pomerantsoceras thus represents, except for un−revised poorly understood taxa, the single known oncocerid genus surviving the end−Ordovician extinction events. Cyrtoceras pollux is unusual among the Silurian nautiloids because of its small shell. Colour pattern char− acterised by a few longitudinal bands on the entire circumference of the shell is here reported in oncocerids. Longicone and only slightly curved small shells as in Pomerantsoceras are unusual among nautiloids and resemble straight shells of orthocerids and pseudorthocerids, in which the colour pattern consists of straight colour bands. Consequently the shell shape as well as the colour pattern should be regarded as adaptive convergence with orthocerids and pseudorthocerids. It supports the hypothesis that colour pattern functioned as camouflage and its evolution was under adaptive control. In addition, several types of the shell malformations including anomalous growth of septa, shell wall and pits on an internal mould are described. Key words: Cephalopoda, Nautiloidea, taxonomy, colour pattern, shell size, shell malformation, Silurian. Štěpán Manda [[email protected]], Odbor regionální geologie sedimentárních formací, Česká geologická služba, PO Box 85, Praha 011, 118 21, Česká republika; Vojtěch Turek [[email protected]], Národní muzeum, Přírodovědecké muzeum, paleontologické oddělení, Václavské náměstí 68, 115 79 Praha 1, Czech Republic.