The Phylogeny of Coleoid Cephalopods Inferred from Molecular Evolutionary Analyses of the Cytochrome C Oxidase I, Muscle Actin, and Cytoplasmic Actin Genes

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogeny of Coleoid Cephalopods Inferred from Molecular Evolutionary Analyses of the Cytochrome C Oxidase I, Muscle Actin, and Cytoplasmic Actin Genes W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1998 The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes David Bruno Carlini College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Genetics Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Carlini, David Bruno, "The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes" (1998). Dissertations, Theses, and Masters Projects. Paper 1539616597. https://dx.doi.org/doi:10.25773/v5-3pyk-f023 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with with permission permission of the of copyright the copyright owner. owner.Further reproductionFurther reproduction prohibited without prohibited permission. without permission. THE PHYLOGENY OF COLEODD CEPHALOPODS INFERRED FROM MOLECULAR EVOLUTIONARY ANALYSES OF THE CYTOCHROME C OXIDASE I, MUSCLE ACTIN, AND CYTOPLASMIC ACTIN GENES A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by David Bruno Carlini 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9903260 UMI Microform 9903260 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy David B. Carlini Approved, August 1998 ' A ~ £ - C\,M> John E. Graves, Ph.D. Committee Chairman/Advisor /Elizabeth A. Canuel, Ph.D. l£o U s . Roger L. Mann, Ph.D. Kimberly S. Reece, Ph.D. — -------- Michael Vecchione, Ph.D. National Museum of Natural History Smithsonian Institution, Washington, D.C. ' J£_ Richard E. Yoyng, Ph.! Department of Oceanography University of Hawaii, Honolulu ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS Page ACKNOWLEDGMENTS vi LIST OF TABLES viii LIST OF FIGURES ix ABSTRACT xiii GENERAL INTRODUCTION 2 Morphological Systematics of the Coleoidea 2 Molecular Systematics of the Coleoidea 7 Phylogenetic Analysis 11 Phylogenetic Hypotheses Tested 13 CHAPTER 1. PHYLOGENETIC RELATIONSHIPS OF COLEOID CEPHALOPODS INFERRED FROM THE MOLECULAR EVOLUTION OF THE MITOCHONDRIAL CYTOCHROME C OXIDASE I GENE 19 INTRODUCTION 20 MATERIALS AND METHODS 25 Taxonomic Sampling 25 DNA Extraction, PCR Amplification, and Cloning 25 Manual Sequencing 27 Automated Sequencing 27 Data Analysis 28 RESULTS 33 Sequence Variation and Divergence 33 iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Phylogenetic Relationships 35 DISCUSSION 40 Sequence Variation and Divergence 40 Phylogenetic Relationships 41 CHAPTER 2. PHYLOGENETIC RELATIONSHIPS OF COLEOID CEPHALOPODS INFERRED FROM THE MOLECULAR EVOLUTION OF TWO PARALOGOUS GENES FROM THE ACTIN GENE FAMILY 82 INTRODUCTION 83 MATERIALS AND METHODS 88 Taxonomic Sampling 88 PCR Amplification, Cloning, and Sequencing 88 Data Analysis 89 RESULTS 93 Actin Isoforms 93 Actin I Sequence Variation and Divergence 94 Actin IT Sequence Variation and Divergence 95 Phylogenetic Relationships - Actin I 97 Phylogenetic Relationships - Actin II 100 DISCUSSION 103 The Actin Gene Family of Coleoid Cephalopods 103 Sequence Variation and Divergence 107 Phylogenetic Relationships 109 CHAPTER 3. PHYLOGENETIC RELATIONSHIPS OF COLEOID CEPHALOPODS INFERRED FROM THE ANALYSIS OF COMBINED ACTIN I, ACTIN E, AND CYTOCHROME C OXIDASE I DATA SETS AND A COMPARISON OF THEIR PATTERNS OF MOLECULAR EVOLUTION 180 INTRODUCTION 181 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MATERIALS AND METHODS . .. 186 Taxonomic Sampling 186 Data Analysis 186 RESULTS 191 Sequence Variation and Divergence 191 Codon Usage 192 Phylogenetic Analyses 193 DISCUSSION 199 Sequence Variation and Divergence 199 Codon Usage 200 Phylogenetic Relationships 201 CONCLUSIONS 245 Octopodiformes and Decapodiformes 245 Octopoda 245 Sepioidea and Myopsida 248 Oegopsida LITERATURE CITED 257 VITA 273 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS This study could not have been accomplished without the help of many people, most of whom I attempt to list below-I apologize in advance for any omissions. I extend my sincere thanks to my dissertation committee. I am indebted Dr. John Graves, my major advisor, for his encouragement, support, and advice through the duration of this project. Dr. Kimberly Reece deserves special thanks for generously sharing her molecular expertise and for her consistent willingness to help in all aspects of this research project. I am grateful to Drs. Michael Vecchione and Richard Young for inspiring a fervent interest in cephalopod biology and for answering all my questions promptly and patiently. I also thank them for their immense help in collecting specimens and for introducing me to cephalopod researchers throughout the world. Thanks to Drs. Roger Mann and Elizabeth Canuel for critically reviewing this dissertation and for their helpful suggestions. I thank the following people for their help in the molecular aspects of this project: Dr. Kimberely Reece, Jan McDowell, Nancy Stokes, Dr. Peter Cooper, and all past and present members of the Fisheries Genetics lab. Dr. Mark Siddall, Dr. Andy Anderson, and Dr. Emmett Duffy provided invaluable assistance with phylogenetic methods. The cephalopod specimens included in this study could not have been obtained without the generous aid of Dr. Richard Young, Dr. Michael Vecchione, Dr. Yasunori Sakurai, Dr. Brad Seibel, Tim Stranks, Amanda Reid, David Woodbury, Dr. Jayson Semmens, Matt Parry, Scott Herke, Dr. John Bower, Ian Bartol, Liz Shea, Dr. Laure Bonnaud, Dr. Renata Boucher-Rodoni, Dr. Steven O'Shea, and Dr. Louise Allcock. I also thank the officers and crews of FTS HOKUSEIMARU and R/V DAVID STARR JORDAN. vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation was financially supported by a National Science Foundation Doctoral Dissertation Improvement Grant (DEB-9623353) awarded to D.B. Carlini and J.E. Graves. The research was also supported by a Lemer Gray Fund for Marine Research Grant, a Western Society of Malacologists Student Research Grant in Malacology, and a VIMS Minor Research Grant awarded to D.B. Carlini. I thank my parents, brothers, and sisters for their support and encouragement. I cannot express enough thanks to my wife Amy for her love, commitment, and sacrifice over the past several years. I am also grateful for her long-standing interest in and reverence for the natural world. With her, I have enjoyed many enlightening discussions about biology and evolution. Finally, I must acknowledge our daughter Zoe for serving as a strong, although unwitting, source of inspiration. vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES Table Page 1. List of specimens used in this study 51
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Primitive Soft-Bodied Cephalopods from the Cambrian
    ACCEPTED DRAFT Please note that this is not the final manuscript version. Links to the published manuscript, figures, and supplementary information can be found at http://individual.utoronto.ca/martinsmith/nectocaris.html doi: 10.1038/nature09068 Smith & Caron 2010, Page 1 Primitive soft-bodied cephalopods from the Cambrian Martin R. Smith 1, 2* & Jean-Bernard Caron 2, 1 1Departent of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Ontario, M5S 3G5, Canada 2Department of Palaeobiology, Royal Ontario Museum, 100 Queen ’s Park, Toronto, Ontario M5S 2C6, Canada *Author for correspondence The exquisite preservation of soft-bodied animals in Burgess Shale-type deposits provides important clues into the early evolution of body plans that emerged during the Cambrian explosion 1. Until now, such deposits have remained silent regarding the early evolution of extant molluscan lineages – in particular the cephalopods. Nautiloids, traditionally considered basal within the cephalopods, are generally depicted as evolving from a creeping Cambrian ancestor whose dorsal shell afforded protection and buoyancy 2. Whilst nautiloid-like shells occur from the Late Cambrian onwards, the fossil record provides little constraint on this model, or indeed on the early evolution of cephalopods. Here, we reinterpret the problematic Middle Cambrian animal Nectocaris pteryx 3, 4 as a primitive (i.e. stem-group), non-mineralized cephalopod, based on new material from the Burgess Shale. Together with Nectocaris, the problematic Lower Cambrian taxa Petalilium 5 and (probably) Vetustovermis 6, 7 form a distinctive clade, Nectocarididae, characterized by an open axial cavity with paired gills, wide lateral fins, a single pair of long, prehensile tentacles, a pair of non-faceted eyes on short stalks, and a large, flexible anterior funnel.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • A Short Note on the Cephalopods Sampled in the Angola Basin During the DIVA-1 Expedition Uwe Piatkowskiã, Rabea Diekmann
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 227–230 www.elsevier.de/ode RESULTS OF THE DIVA-1 EXPEDITION OF RV ‘‘METEOR’’ (CRUISE M48/1) A short note on the cephalopods sampled in the Angola Basin during the DIVA-1 expedition Uwe PiatkowskiÃ, Rabea Diekmann IFM-GEOMAR, Leibniz-Institut fu¨r Meereswissenschaften an der Universita¨t Kiel, Du¨sternbrooker Weg 20, D-24105 Kiel, Germany Abstract Five cephalopods, all belonging to different species, were identified from deep-sea trawl samples conducted during the DIVA 1-expedition of RV ‘‘Meteor’’ in the Angola Basin in July 2000. These were the teuthoid squids Bathyteuthis abyssicola, Brachioteuthis riisei, Mastigoteuthis atlantica, Galiteuthis armata, and the finned deep-sea octopus Grimpoteuthis wuelkeri. The present study contributes information on size, morphometry, biology and distribution of the species form this unique cephalopod collection. r 2004 Elsevier GmbH. All rights reserved. Keywords: Cephalopoda; Deep-sea; Angola Basin; Cirrate octopods Introduction captured. These circumstances demonstrate the great scientific value of any cephalopod sampled from deep- Cephalopods in the bathyal and abyssal ecosystems sea habitats. The abyssal plains still belong to the most have been the subject of only a limited number of studies unknown regions in the oceans. One of these plains, the due to the obvious difficulties involved in collecting Angola Basin was sampled during the RV ‘‘Meteor’’ them adequately at such great depths (Voss 1967; expedition in 2000. In the present study, we provide Villanueva 1992). A further drawback relates to their information on a small collection of cephalopods which delicate bodies, which are frequently damaged almost have been caught during the expedition and which beyond recognition in trawl samples.
    [Show full text]
  • An Illustrated Key to the Families of the Order
    CLYDE F. E. ROP An Illustrated RICHARD E. YOl and GILBERT L. VC Key to the Families of the Order Teuthoidea Cephalopoda) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 13 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 13 Clyde F. E. Roper, An Illustrated Key 5K?Z" to the Families of the Order Teuthoidea (Cephalopoda) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields.
    [Show full text]
  • Headed Whales (Peponocephala Electra) in Hawaiian Waters
    Notes MARINE MAMMAL SCIENCE, 00(00): 00–00 (Month 2018) VC 2018 Society for Marine Mammalogy DOI: 10.1111/mms.12507 Stomach contents and diel diving behavior of melon-headed whales (Peponocephala electra) in Hawaiian waters 1 KRISTI L. WEST, Department of Human Nutrition, Food and Animal Science, College of Tropical Agriculture and Human Resources, Agricultural Sciences 216, 1955 East-West Road, University of Hawai‘i at Manoa, Honolulu, Hawai‘i 96822, U.S.A.; WILLIAM A. WALKER, Marine Mammal Laboratory, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115, U.S.A.; ROBIN W. BAIRD,DANIEL L. WEBSTER, and GREGORY S. SCHORR, Cascadia Research Collective, 218 1=2 W. 4th Avenue, Olympia, Washington 98501, U.S.A. Knowledge of the diet and diving behavior of a species is crucial for understand- ing its behavior and ecology, and also has relevance to assessing the impact of poten- tial changes in behavior or spatial use. Assessing diet for many species of cetaceans is difficult, given that most foraging occurs far below the surface and that stomach contents of stranded animals are rarely available. Very little information on food habits or the diving behavior of melon-headed whales (Peponocephala electra)isavail- able from any region of the world. Although there is a paucity of knowledge on melon-headed whales, more is known about them in Hawaiian waters than anywhere else in the world (Aschettino et al. 2012, Woodworth et al. 2012, Baird 2016). In Hawai‘i, two populations of melon-headed whales are recognized, a Hawaiian Islands population estimated to be close to 5,000 individuals that travels offshore and among the islands, and a smaller, inshore population estimated to be about 450 individuals that is found off Hawai‘i Island and known as the Kohala resident population (Aschettino 2010, Aschettino et al.
    [Show full text]
  • Argonauta Argo Linnaeus, 1758
    Argonauta argo Linnaeus, 1758 AphiaID: 138803 PAPER NAUTILUS Animalia (Reino) > Mollusca (Filo) > Cephalopoda (Classe) > Coleoidea (Subclasse) > Octopodiformes (Superordem) > Octopoda (Ordem) > Incirrata (Subordem) > Argonautoidea (Superfamilia) > Argonautidae (Familia) Natural History Museum Rotterdam Natural History Museum Rotterdam Sinónimos Argonauta argo f. agglutinans Martens, 1867 Argonauta argo f. aurita Martens, 1867 Argonauta argo f. mediterranea Monterosato, 1914 Argonauta argo f. obtusangula Martens, 1867 Argonauta argo var. americana Dall, 1889 Argonauta bulleri Kirk, 1886 Argonauta compressus Blainville, 1826 Argonauta corrugata Humphrey, 1797 Argonauta corrugatus Humphrey, 1797 Argonauta cygnus Monterosato, 1889 Argonauta dispar Conrad, 1854 Argonauta ferussaci Monterosato, 1914 Argonauta grandiformis Perry, 1811 Argonauta haustrum Dillwyn, 1817 Argonauta haustrum Wood, 1811 Argonauta minor Risso, 1854 Argonauta monterosatoi Monterosato, 1914 Argonauta monterosatoi Coen, 1915 Argonauta naviformis Conrad, 1854 1 Argonauta pacificus Dall, 1871 Argonauta papyraceus Röding, 1798 Argonauta papyria Conrad, 1854 Argonauta papyrius Conrad, 1854 Argonauta sebae Monterosato, 1914 Argonauta sulcatus Lamarck, 1801 Ocythoe antiquorum Leach, 1817 Ocythoe argonautae (Cuvier, 1829) Referências original description Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp., available
    [Show full text]
  • Arctic Cephalopod Distributions and Their Associated Predatorspor 146 209..227 Kathleen Gardiner & Terry A
    Arctic cephalopod distributions and their associated predatorspor_146 209..227 Kathleen Gardiner & Terry A. Dick Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Keywords Abstract Arctic Ocean; Canada; cephalopods; distributions; oceanography; predators. Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals Correspondence illustrates their trophic importance. There has been considerable research on Terry A. Dick, Biological Sciences, University cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west of Manitoba, Winnipeg, Manitoba R3T 2N2, side of Greenland, where they are considered a potential fishery and are taken Canada. E-mail: [email protected] as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are doi:10.1111/j.1751-8369.2010.00146.x still incomplete. This study integrates most known locations of Arctic cepha- lopods in an attempt to locate potential areas of interest for cephalopods, and the predators that feed on them. International and national databases, museum collections, government reports, published articles and personal communica- tions were used to develop distribution maps. Species common to the Canadian Arctic include: G. fabricii, Rossia moelleri, R. palpebrosa and Bathypolypus arcticus. Cirroteuthis muelleri is abundant in the waters off Alaska, Davis Strait and Baffin Bay. Although distribution data are still incomplete, groupings of cephalopods were found in some areas that may be correlated with oceanographic variables. Understanding species distributions and their interactions within the ecosys- tem is important to the study of a warming Arctic Ocean and the selection of marine protected areas.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Vampire Squid Final
    An Examination regarding the Phylogenetic Position of Vampyroteuthis infernalis Printing: Alex Dutton, Chase Klungle, Jake Nymeyer This poster is 48” wide by 36” high. It’s designed to be printed on a INTRODUCTION METHODS RESULTS large Vampire squid: • Research included 43 in-class taxa with one additional in-class outgroup. • Vampyroteuthis infernalis, “the living fossil” is found nested in-between the Vampyroteuthis infernalis, or the Vampire Squid, is a cephalopod found deep in the • Cross examination of two genes was implemented (H3 and Ribosomal 28s genes). suborder Cirrata (Octopuses) and the Order Oegopsida (squid) while exhibiting characteristics of both. ocean. It has 8 arms connected by a webbing or “cape,” and is typically black in color • Individual gene processing was accomplished utilizing Phylogeny.fr wherein: with red eyes. These attributes led to it being called a vampire (not because it drinks alignment of data was processed by MUSCLE, curation by Gblocks, Phylogeny analysis • This data shows V. infernalis as being contained within the monophyletic Customizing the Content: blood). This species exhibits traits that appear in both octopus and squid families by PhyML + aLRT, and initial tree rendering by TreeDyn. supergroup Octopodiformes. which results in a one-of-a-kind organism. However, the phylogenetic position of V. • SequenceMatrix was employed to combine the aligned gene sequences. • We can also note the increased evolutionary distance between V. infernalis and infernalis has yet to be truly defined. Some researchers believe that it aligns better squids as opposed to their closeness in previous research. The placeholders in this with squids while others side with its closeness to octopuses.
    [Show full text]