Download 1 File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
House-Invading Crickets
■ ,VVXHG LQ IXUWKHUDQFH RI WKH &RRSHUDWLYH ([WHQVLRQ :RUN$FWV RI 0D\ DQG -XQH LQ FRRSHUDWLRQ ZLWK WKH 8QLWHG 6WDWHV 'HSDUWPHQWRI$JULFXOWXUH 'LUHFWRU&RRSHUDWLYH([WHQVLRQ8QLYHUVLW\RI0LVVRXUL&ROXPELD02 HOME AND ■ ■ ■ DQHTXDORSSRUWXQLW\$'$LQVWLWXWLRQ H[WHQVLRQPLVVRXULHGX CONSUMER LIFE House-Invading Crickets rickets belong to the insect near buildings. Once inside, they order Orthoptera, which feed on and cause damage to items Calso includes grasshoppers such as cotton, linen, wool, silk and and katydids. The chirping sounds fur. Materials soiled by perspiration for which they are famous are made or food are more likely to be by the adult males rubbing their damaged. These crickets also eat wings together to attract females. dead or dying insects, including Like their grasshopper and katydid their own species. At times, field 0 1 relatives, crickets have long hind crickets may also cause damage to Approximate size in inches legs fitted for jumping. In addition, field crops. Figure 1. Field cricket. adult females have long, swordlike House cricket. The house ovipositors at the tip of their cricket (Acheta domesticus) is light abdomens for laying eggs in the yellowish-brown and has three soil. darker brown bands across the head Crickets will accidentally invade (Figure 2). The adult stage varies in homes, but only rarely will they length from 0.75 to 1 inch. During reproduce there. The usual point warm weather, house crickets can of entry is through open or poorly live outdoors and are especially 0 1 fitted doors, and cracks in doors, fond of garbage dumps. Approximate size in inches windows, foundations or siding. Like the field cricket, house Figure 2. -
The Evolution of Complex Calls in Meadow
THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by NATHAN HARNESS Dr. Johannes Schul, Dissertation Supervisor July 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS presented by Nathan Harness, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Johannes Schul Professor Sarah Bush Professor Lori Eggert Professor Patricia Friedrichsen For my family Rachel and Mayr have given me so much. They show me unselfish affection, endless support, and generosity that seems to only grow. Without them the work here, and the adventure we’ve all three gone on surrounding it, would not have been possible. They have sacrificed birthdays, anniversaries, holidays, and countless weekends and evenings. They’ve happily seen me off to weeks of field work and conference visits. I am thankful to them for being so generous, and completely lacking in resentment at all the things that pull their husband and dad in so many directions. They have both necessarily become adept at melting away anxiety; I will forever be indebted to the hugs of a two-year-old and the kind words of his mom. Rachel and Mayr both deserve far more recognition than is possible here. I also want to thank my parents and brother and sisters. -
Insects in Turf
Insects in Turf Pest Manager Training Albany Technical College February 26, 2019 Dr. James N. McCrimmon Abraham Baldwin Agricultural College Where do Insects fit in? Organization of 5 Kingdoms living organisms: – Animalia – Kingdom Phylum – Phylum – Arthropoda – Class – Nematoda – Order Class – Family – Insecta – Genus Order – Species – 7/32 are turf pests • Class ▫ Insecta Chitinous exoskeleton Three-part body (head, thorax, and abdomen) Three pairs of jointed legs Antennae Compound eyes Two antennae Introduction to Insect Biology We are fully immersed with insects – Over 1,000,000 insect species worldwide Introduction to Insect Biology An estimated 40 million insects for every acre of land Live in all habitats except, ocean Introduction to Insect Biology Diversity/richness greatest in tropical climates If global temperatures continue to rise, their population will grow and spread Introduction to Insect Biology Not all insects are pests; many are beneficial, for example, with the pollination of plants. Other beneficial roles of insects include… – Pest predation – Recycling/decomposition – Population control Introduction to Insect Biology A few groups (Orders) account for most of the population. – Coleoptera (beetles) 35% – Hymenoptera (bees, ants and wasps) 25% – Diptera (flies) 12.5% – Lepidoptera (butterflies and moths) 12.5% – Hemiperta (true bug) 10% – Orthoptera (grasshoppers and crickets) 2% – Others 3% Insect Identification Destructive Turfgrass Insects 7 Insecta Orders Insecta Orthoptera Coleoptera Lepidoptera -
September-October 2006
New Hope Audubon Society Newsletter Volume 32, Number 5: September-October 2006 Field Trip Goals for Fall 2006-2007 by Dianne Byrne, Field Trip Chair Planning field trips for New Hope Audubon Society members is fun. That’s one reason why I volunteered to be the Field Trip Chair. I meet some of the best birders in NC (like Curtis Smalling, who led a marvelous field trip in the NC mountains last Fall), local butterfly experts like Will Cook and Jeff Pippen (who are both leading events in August and September), dragonfly guru Josh Rose, and bug enthusiasts like Patrick Coin who captures amazing creatures of the night in his photographs. Cynthia Fox and Tom Driscoll, superb birders both, lead trips for NHAS each month. Carol Ann McCormick from the NC Botanical Gardens invites NHAS members on her beautiful wildflower walks every year. Besides rubbing elbows, or sharing spotting scopes, with such naturalists extraordinaire, I also hear about fascinating places to visit. One member suggested a trip to the Carnivore Preservation Trust, a place I thoroughly enjoyed and had not heard about before. Then there is the thrill of visiting an internationally known wildlife research center like the Duke Lemur Center and hearing participants tell how much they loved seeing the amazing animals that reside there. My work is easy because NC is blessed with a variety of unique wildlife habitats, and because there are many nature experts willing to share their knowledge by leading field trips. Besides having a good time as Field Trip Chair, what other field trip goals do I have for the upcoming year? I described some of them at the annual planning meeting of the Board of Directors in July and solicited comments and suggestions from Board members. -
Biological, Ecological, and Morphological Investigations of the Rice Water Weevil, Lissorhoptrus Oryzophilus Kuschel, on Two Rice Genotypes
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 Biological, Ecological, and Morphological Investigations of the Rice Water Weevil, Lissorhoptrus Oryzophilus Kuschel, on Two Rice Genotypes. Gary Leonard Cave Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Cave, Gary Leonard, "Biological, Ecological, and Morphological Investigations of the Rice Water Weevil, Lissorhoptrus Oryzophilus Kuschel, on Two Rice Genotypes." (1983). LSU Historical Dissertations and Theses. 3879. https://digitalcommons.lsu.edu/gradschool_disstheses/3879 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
Visit the National Academies Press Online, the Authoritative Source For
http://www.nap.edu/catalog/10134.html We ship printed books within 1 business day; personal PDFs are available immediately. Compensating for Wetland Losses Under the Clean Water Act Committee on Mitigating Wetland Losses, Board on Environmental Studies and Toxicology, Water Science and Technology Board, National Research Council ISBN: 0-309-50290-X, 348 pages, 6 x 9, (2001) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/10134.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online for free • Explore our innovative research tools – try the “Research Dashboard” now! • Sign up to be notified when new books are published • Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. Compensating for Wetland Losses Under the Clean Water Act http://www.nap.edu/catalog/10134.html COMPENSATING FOR WETLAND LOSSES UNDER THE CLEAN WATER ACT Committee on Mitigating Wetland Losses Board on Environmental Studies and Toxicology Water Science and Technology Board Division on Earth and Life Studies National Research Council NATIONAL ACADEMY PRESS Washington, D.C. -
New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed. -
Steinernema Neocurtillis N. Sp
JOURNAL OF NEMATOLOGY VOLUME 24 DECEMBER 1992 NUMBER 4 Journal of Nematology 24(4):463--477. 1992. © The Society of Nematologists 1992. Steinernema neocurtillis n. sp. (Rhabditida: Steinernematidae) and a Key to Species of the Genus Steinernema 1 KHUONG B. NGUYEN AND GROVER C. SMART, JR. 2 Abstract: Steinernema neocurtillis n. sp. isolated from the mole cricketNeocurtilla hexadactyla Perty can be distinguished from other members of the genus by characteristics of the first-generation male and the third-stage infective juvenile (IJ). In the male, the distance from the anterior end to the excretory pore (DAE) is less than the body width at the excretory pore; D% (DAE divided by length of esophagus x 100) is low at 19. The gubernaculum l~figth is greater than three-fourths the spicule length. Range of the ratio gubernaculum length divided by spicule length is 0.82-0.93 in the first- generation male and 0.92-1.00 in the second-generation male. In the IJ, the distance fl-om the anterior end to the excretory pore is extremely short (18 p~m), causing the D% and E% (DAE divided by tail length x 100) to be low (D% = 23 and E% = 12). Average body length of the IJ is 885 ~m. Key words: entomopathogenic nematode, mole cricket parasite, morphology, nematode, new spe- cies, Neocurtilla hexadactyla, Steinernema neocurtillis n. sp., taxonomy. A survey of the nematode parasites and We describe the nematode herein as associates of the mole crickets Scapteriscus Steinernema neocurtillis n. sp., named after boreUii Giglio-Tos, S. vicinus Scudder, S. -
Archiv Für Naturgeschichte
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1902 Band/Volume: 68-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Orthoptera. 1213-1280 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Orthoptera. Bearbeitet vou Dr. Robert Lucas in Rixdorf bei Berliu. A. Publikationen (Autoren alphabetisch). Alfkeu, J. D. Neue Orthopteren von Neu-Seeland und den Hawaiischen Inseln. (Ergebnisse einer Reise nach dem Pacific. [Schauinsland]). Abhdlgn. Naturw. Ver. Bremen, 17. Bd. 1. Hft. p. 141—152. — Ausz. von N. v. Adelung, Zool. Centralbl. 9. Jhg. p. 30—31. Behandelt Platyzosteria (1 n.), Argosarchus (1), Paranemobius n. g. (1 n.), Gammaroparnops n. g. (2), Gymnoplectron (1 n.). Allen, H. A. An Insect from the Coal-measures of South Wales. 1 Fig. in: Geol. Magaz. N. S. (IV) vol. VIII p. 65—68. Bei der Seltenheit von Insektenresten aus dem Carbon der britisch. Inseln erscheint das Auffinden eines fast vollständigen (Basis fehlt), flachliegenden Flügels aus den tieferen Kohlenflötzen von Llanbradach Colliery Cardifi" sehr bemerkenswerth. Es wird als Fouquea cambrensis beschrieben. Azam, J. (1). Catalogue synonymique et systematique des Orthop- teres de France. Miscellan. Entom. vol. 9 No. 2 p. 17 — 31, No. 3/4 p. 33—48, No. 5/6 p. 65—80, No. 7—8 p. 97—112, No. 10 p. 145—160 (ä suivre). — (2). Orthopteres recueiüis dans l'ile de Cypre. Bull. Soc. Entom. France, 1901, No. 10 p. 188—191. Liste von 26 Orthopt.-Spp. aus der Umgegend von Larnaca (ile de Chypre), dar. -
Borror Laboratory of Bioacoustics
SUMMARY CATALOG OF SOUND ARCHIVE RECORDINGS 11-17-2005 BORROR LABORATORY OF BIOACOUSTICS Phone: 614-292-2176 Fax: 614-292-7774 e-mail: [email protected] http://blb.biosci.ohio-state.edu Dr. Douglas A. Nelson Director, Associate Professor Phone : 614-292-7551 e-mail: [email protected] Dr. Jill Soha Curator, Research Associate II Phone : 614-292-5637 e-mail: [email protected] MAIL ADDRESS: Department of Evolution, Ecology, and Organismal Biology College of Biological Sciences 318 W. 12th Avenue The Ohio State University Columbus, OH 43210-1293 SITE ADDRESS: Museum of Biological Diversity Room 1130 1315 Kinnear Road The Ohio State University Columbus, OH 43212-1192 Page 2 Borror Laboratory of Bioacoustics Summary Catalog BLB RECORDINGS The Borror Laboratory was founded by Dr. Donald J. Borror. From 1945 to 1987, original recordings in the collection were made primarily by him, with contributions also from his students, OSU faculty and staff, and BLB associates. Today collection augmentation is primarily from the research efforts by the BLB staff and students, but increasingly we receive material from outside contributors. This catalog summarizes the Borror Laboratory's current holdings and is organized taxonomically within each class. Taxonomy and nomenclature of North and Central American birds follow the 1998 "AOU Checklist" and its subsequent annual updates; for other bird species, "Birds of the World" (Sibley & Monroe 1990) is the primary reference. Mammal taxonomy follows "Walker's Mammals of the World" (Nowak 1999). Amphibian taxonomy follows "Biology of the Amphibians" (Duellman & Trueb 1986). Insect taxonomy follows "American Insects: A Handbook of the Insects of American North of Mexico" (Arnett, R.H. -
Hole Notes the Official Publication of the MGCSA
Norma O’Leary CGCS MGCSA 2017 Champion Hole Notes The Official Publication of the MGCSA Vol. 52, No. 8 September, 2017 Page 2 ank You Annual MGCSA Sponsors ORIGINATION, INC. Page 3 Never too early to plan ahead ... Check out the Jacobsen HR Series of wide-area rotary mowers. Ask us about custom The HR Series sets a new industry standard nancing! for the most efficient use of power! • Compact chassis design • Less weight = more power for mowing • Highest power to weight ratio in class • Improved fuel economy HR800 Adam Hoffman Ph: 612-802-3149 • Nick Sherer Ph: 612-308-0102 • Mitch Stewart Ph: 515-240-8874 PAR AIDE 1710 Alexander Road • Eagan, MN 55121 • www.Turfwerks.com October 2 The Scramble Edina Golf and Country Club Host Brandon Schindele October 9 The Wee One Brackett’s Crossing Country Club Host Tom Proshek It Wouldn’t Be The Same Without YOU Page 4 CONTENTS Vol. 52, No. 8 September, 2017 Feature Articles: Protecting Trees and Shrubs Against Winter Damage pages 22 - 32 by Dr. Bert Swanson and Richard Rideout Winter Is Coming, Is Your Pump Station Ready? pages 38 - 41 By By Mike Whitacre, Craig Vigen and Jim Dougherty, Ferguson Waterworks Strange ings You Can Find In Turf pages 42 - 49 By Dr. Vera Krischik, UMN Entomology Extension EDITOR Charles Erickson Selected for the Golf Hall of Fame pages 50 - 53 DAVE KAZMIERCZAK, CGCS DAVEPRESTWICK.COMCASTBIZ.NET by MGA and Hole Notes Magazine MDA Personal Protective Gear pages 54 - 56 Monthly Columns: Presidential Perspective pages 6 - 7 By Erin McManus In Bounds pages 8 - 11 By Jack MacKenzie, CGCS Edina Country Club is prepared for The On The Cover: Scramble Golf Tournament. -
Mole Crickets: in THIS ISSUE
A PRACTICAL RESEARCH DIGEST FOR TURF MANAGERS TurfGrass TRENDS Volume 6, Issue 1 January 1997 Managing Mole Crickets: IN THIS ISSUE Developing a Strategy for Success Managing Mole Crickets: Developing a Strategy for by Rick Brandenburg Success North Carolina State University Mole Crickets: The Problem Mole Crickets: The Problem The Challenge of Management Mole crickets have firmly established themselves as a major turfgrass pest, not Mole Cricket Life Cycle only in the Southeastern United States, but throughout the world. Concerns A Mole Cricket Management Plan over the potential damage from this pest range from Spain and Italy in Europe to South Africa and Southeast Asia. While different species are responsible for Five Steps to Effective Mole these infestations, they all-regardless of where they occur-are capable of Cricket Management. ... 7 causing severe damage and are difficult to control. Back to Basics - Insecticide The consistent themes of serious damage and expensive control measures have Primer, Part Two: Chemical moved this pest to the number one status for many turfgrass managers in Classes of Turfgrass affected areas. In the United States, the problem extends from eastern Texas Insecticides 9 across Louisiana, Mississippi, Alabama, Georgia, and Florida and north up the coast through South Carolina and North Carolina. Small pockets of infesta- Genetic Resistance to Mole tion have been reported in other southern states further to the west. Crickets in Turf Bermudagrass 17 Planning Ahead to Minimize reprinted America. Insecticide Impacts on Golf are of Courses 18 article Society this Entomological the accompanying of illustrations permission by All TurfGrass TRENDS «1775 T Street NW • Washington, DC 20009-7124 Phone: 202-483-TURF • Fax: 202-483-5797 • Internet: [email protected] The predominant species throughout reside mostly in the soil, we do not the southeastern United States have know what they are doing, and it is been the tawny mole cricket more difficult to manage control of the TurfGrass (Scapteriscus vicinus) and the southern pest.