Insects in Turf

Total Page:16

File Type:pdf, Size:1020Kb

Insects in Turf Insects in Turf Pest Manager Training Albany Technical College February 26, 2019 Dr. James N. McCrimmon Abraham Baldwin Agricultural College Where do Insects fit in? Organization of 5 Kingdoms living organisms: – Animalia – Kingdom Phylum – Phylum – Arthropoda – Class – Nematoda – Order Class – Family – Insecta – Genus Order – Species – 7/32 are turf pests • Class ▫ Insecta Chitinous exoskeleton Three-part body (head, thorax, and abdomen) Three pairs of jointed legs Antennae Compound eyes Two antennae Introduction to Insect Biology We are fully immersed with insects – Over 1,000,000 insect species worldwide Introduction to Insect Biology An estimated 40 million insects for every acre of land Live in all habitats except, ocean Introduction to Insect Biology Diversity/richness greatest in tropical climates If global temperatures continue to rise, their population will grow and spread Introduction to Insect Biology Not all insects are pests; many are beneficial, for example, with the pollination of plants. Other beneficial roles of insects include… – Pest predation – Recycling/decomposition – Population control Introduction to Insect Biology A few groups (Orders) account for most of the population. – Coleoptera (beetles) 35% – Hymenoptera (bees, ants and wasps) 25% – Diptera (flies) 12.5% – Lepidoptera (butterflies and moths) 12.5% – Hemiperta (true bug) 10% – Orthoptera (grasshoppers and crickets) 2% – Others 3% Insect Identification Destructive Turfgrass Insects 7 Insecta Orders Insecta Orthoptera Coleoptera Lepidoptera Hemiptera Homoptera Diptera Hymenoptera Orthoptera Grasshoppers, locust, crickets, katydids, mantids, walkingsticks, cockroaches Metamorphosis Incomplete (simple) Egg, nymph and adult Mouthparts Chewing Mandibles • Plant foliage Wings Front wings (forewings) Tegmina (leathery forewing) Hindwings Membranous wings that fold under the forewings like a fan Orthoptera Legs Enlarged hind leg Jumpers Orthoptera Legs Mole cricket Shovel like front legs Orthoptera Destructive turfgrass insects in this order… Mole cricket Locust Mole Crickets Mole crickets Tawny (Scapteriscus vicinus) Southern (Scapteriscus borellii) Short-winged (Scapteriscus abbreviatus) Northern (Neocurtilla hexadactyla) Mole Crickets Southern mole cricket Tawny mole cricket Short-winged mole cricket Northern mole cricket Mole crickets Tawny (Scapteriscus vicinus) Southern (Scapteriscus borellii) Most destructive in the U.S.A Introduced into U.S. 1900 • From South America Tawny mole cricket Southern mole cricket Tawny Mole crickets Tawny (Scapteriscus vicinus) Tawny Mole crickets Tawny mole cricket may be host specific… Southern Mole crickets Southern (Scapteriscus borellii) Southern Mole crickets Southern Short-winged Mole crickets Short-winged (Scapteriscus abbreviatus) Incapable of flight Localized populations • Southeastern Florida Northern Mole crickets Northern (Neocurtilla hexadactyla) Mole Crickets Mole crickets Preferred plants Bermudagrass Bahiagrass St. Augustinegrass Centipede Bermudagrass green St. Augustinegrass Mole crickets Preferred soils Sandy soil Dry soil Life Cycle Mole crickets Life cycle spent underground Destructive stages: nymph and adult Tawny nymphs Life Cycle Mole crickets Tawny and Southern mole cricket life cycle May/June Aug./Sept. Sep. – May Nymph Adult Damage Mole crickets Damage Borrowing and tunneling Feeding (herbivores) Tawny Short-winged Northern Mole crickets Damage Borrowing and tunneling Southern • Carnivorous Predators of Mole Crickets Mole crickets Damage Multiplied by digging predators Skunk damage Mole crickets Biological control Crabronid wasp Parasitic wasp Mole crickets Biological control Crabronid wasp Attacks Scapteriscus spp. • Tawny • Southern • Short-winged Introduced from Bolivia Spreading across Florida Mole crickets Current range of the crabronid wasp Mole crickets Wild flower Spermacoce verticillata Attracts crabronid wasp Mole Crickets Mole Crickets Coleoptera Beetles and weevils Woodborers and Bark beetles Metamorphosis Complete Egg, larva (grub) and adult (beetle) Mouthparts Chewing Mandibles Weevil • Snout mouth Weevil: snout mouth Coleoptera Diets Herbivore Eats plants Carnivore Eats animals Herbivore: Japanese beetle Predator Scavenger Predator: tiger beetle Omnivores Eats plants and animals Scavenger: carrion beetle Coleoptera Wings Forewing Elytra (hard covering, shell wing) Hindwing Membranous wings that fold under the forewings like a fan Legs Clawed Climbing Running Coleoptera Male insects in this order… Have decorative ornaments Will defend their territory Coleoptera Destructive as… Larva (grubs) Live in soil Feed on turfgrass roots Adults (beetles) Live above ground Feed on surrounding foliage Coleoptera Grub identification Raster patterns Grouping of definitively arranged hair, spines, and bare spaces on underside of last abdominal segment in front of anus. June beetle Japanese beetle European chafer Asiatic garden beetle Coleoptera Destructive turfgrass insects in this order… Japanese beetle Asiatic garden beetle European chafer Bluegrass weevil Garden beetle Japanese beetle Oriental beetle Billbugs (weevil) Bluegrass weevil European chafer Lepidoptera Moths, skippers, and butterflies Bagworm, corn earworm, clothes moth, and tent caterpillar Some of the most beautiful species. Some of the most important pests. Metamorphosis Complete: Egg, larva (caterpillar) and adult (moth or butterfly) Lepidoptera Mouthparts Chewing (leaves) Mandibles Larva Sucking (nectar) - siphoning Modified labium (coiled-tube) Adult Wings Scale covered Held out, don’t fold up like Neoptera Lepidoptera Wings Bright colors indicate that the insect is poisonous Circular patterns to imitate animal eyes Bright colors hidden under the forewing to frighten predators Lepidoptera Legs Claw like Climbers Lepidoptera Destructive turfgrass insects in this order… Sod webworm Bronzed cutworm Cutworm Armyworms Skippers Fall armyworm Sod webworm Hemiptera True bugs Metamorphosis Incomplete metamorphosis Eggs, nymphs and adults Mouth Piercing Herbivores • Plant sap Carnivores • Blood Hemiptera Wings Held over the abdomen, folded Forewings Hemelytra (halfwing) • Hardened at the base Hindwing Membraeous Hemiptera Legs Walking Climbing Predators Toe bitter Toe bitter Assassin bug Assassin bug Hemiptera Destructive turfgrass insects in this order… Chinch bugs Big-eyed bugs feed on chinch bugs Big-eyed bug Chinch bug Homoptera Aphids, scale, leafhoppers, cicadas, whiteflies, and spittlebugs Very diverse group! Metamorphosis Incomplete metamorphosis Eggs or live born, nymphs and adults Mouthparts Piercing-sucking Plant sap Homoptera Phloem-feeding aphids Honey dew aphid Insert stylets into the plant vascular tissue. The insect does not suck. Vascular tissue pushes the contents through the insect. Excess exudes out the anus. Attract ants that protect them. Sooty mold may grow on honeydew. Some aphids transmit viruses. Homoptera Legs Walking Climbing Scale Mealy bug Aphid Leafhopper Homoptera Destructive turfgrass insects in this order… Mealy bug Ground pearls Scales Leafhopper Spittlebug Aphid Leafhopper Spittlebug Homoptera Spittlebug Produces a mass of frothy spittle Prevents the eggs and nymphs from desiccation (drying out) Diptera True flies: horse flies, deer flies, midges, fruit flies, house flies, mosquitoes. Metamorphosis Complete metamorphosis Eggs, larva (maggots), and adults Mouthparts Piercing-sucking Biting Sponging Diptera Wings Forewing Membraneous Hindwing Haltere (modified wing) Balancing organ Diptera Legs Walking Climbing Diptera Destructive turfgrass insects in this order… Destructive stage March fly Larva Frit fly European crane fly March fly European crane fly: Frit fly “leather jacket” Hymenoptera Ants, wasps, and bees Metamorphosis Complete metamorphosis Eggs, larva, and adults Mouth parts Chewing and sucking Biting Plants Animals Plants and animals Hymenoptera Wings Forewings Membranous Hindwings Membranous Forewing are larger than hind wings Some have no wings Ants Soldiers Workers Hymenoptera Legs Climbing Walking Hymenoptera Destructive turfgrass insects in this order… Fire Ants Harvester ants Fire ants Biting insects in the landscape Wasps Bees Ants Harvester ant Fire Ants Ants Fire Ant (Solenopsis spp.) Imported fire ant Fire Ant Introduction Ants Fire Ants Distribution 1918 • Mobile, AL Fire Ant Distribution Ants Fire Ants Distribution Ants Fire Ants Distribution Ants Fire Ants Distribution Fire Ant Distribution 2010 Ants Fire Ants Distribution 2010 Future Ants Fire Ants Distribution Ants Fire Ants prefer… Sunny locations Dry soil Short grass USGA sand-based putting green Ants Fire Ants Do not feed on turf Disrupt the playing surface Eye sore Stinging/biting insect Hymenoptera Ants Fire Ants eat Scavenge Insects Seeds Carrion Hymenoptera Ants Fire Ants The nest 2 ft nest 3-4 ft into the soil 100,000 to 500,000 workers Winged adults Egg-laying queen Brood (larvae) Hymenoptera Ants Fire Ants A mature nest 2,000 new queens/year New colonies Established in spring and summer Fire ants • How a cast system starts Winged female Fertile female Fertilized by winged male Drones Fertilized female Losses her wings Digs a hole and starts colony Fertilized Queen • Princesses Fertile sisters (clones) Make new colonies • Drones (males) Make new colonies • Workers (females) Sterile little ants • Soldiers (females) Sterile big ants Large mandibles Queen can sense the population dynamics Pheromones Workers are low Make more workers Soldiers are low Make more soldiers If the queen dies, her pheromones production stops If a princess is around, she takes over Hormones in larva change Hatches into a fertile female Imported Fire Ants/Ants Control Options ◦ Bait Treatments ◦ Mound Drench Treatments ◦ Dry Mound Treatments ◦ Broadcast Treatments Imported Fire Ants/Ants Imported Fire Ants/Ants Imported Fire Ants/Ants.
Recommended publications
  • House-Invading Crickets
    ■ ,VVXHG LQ IXUWKHUDQFH RI WKH &RRSHUDWLYH ([WHQVLRQ :RUN$FWV RI 0D\ DQG -XQH LQ FRRSHUDWLRQ ZLWK WKH 8QLWHG 6WDWHV 'HSDUWPHQWRI$JULFXOWXUH 'LUHFWRU&RRSHUDWLYH([WHQVLRQ8QLYHUVLW\RI0LVVRXUL&ROXPELD02 HOME AND ■ ■ ■ DQHTXDORSSRUWXQLW\$'$LQVWLWXWLRQ H[WHQVLRQPLVVRXULHGX CONSUMER LIFE House-Invading Crickets rickets belong to the insect near buildings. Once inside, they order Orthoptera, which feed on and cause damage to items Calso includes grasshoppers such as cotton, linen, wool, silk and and katydids. The chirping sounds fur. Materials soiled by perspiration for which they are famous are made or food are more likely to be by the adult males rubbing their damaged. These crickets also eat wings together to attract females. dead or dying insects, including Like their grasshopper and katydid their own species. At times, field 0 1 relatives, crickets have long hind crickets may also cause damage to Approximate size in inches legs fitted for jumping. In addition, field crops. Figure 1. Field cricket. adult females have long, swordlike House cricket. The house ovipositors at the tip of their cricket (Acheta domesticus) is light abdomens for laying eggs in the yellowish-brown and has three soil. darker brown bands across the head Crickets will accidentally invade (Figure 2). The adult stage varies in homes, but only rarely will they length from 0.75 to 1 inch. During reproduce there. The usual point warm weather, house crickets can of entry is through open or poorly live outdoors and are especially 0 1 fitted doors, and cracks in doors, fond of garbage dumps. Approximate size in inches windows, foundations or siding. Like the field cricket, house Figure 2.
    [Show full text]
  • Cephalobellus Lobulata N. Sp. (Oxyurida
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 95(1): 49-51, Jan./Feb. 2000 49 Cephalobellus lobulata n. sp. (Oxyurida:Thelastomatidae) a Parasite of Neocurtilla claraziana Saussure (Orthoptera: Gryllotalpidae) from Argentina Nora B Camino+, Guillermo R Reboredo Centro de Estudios Parasitológicos y de Vectores, Calle 2, No. 584, 1900 La Plata, Argentina Cephalobellus lobulata n. sp. (Oxyurida: Thelastomatidae) a parasite of the mole cricket Neocurtilla claraziana Saussure (Orthoptera: Gryllotalpidae) found in Argentina is described and illustrated. It is characterized by a short buccal cavity armed with three teeth, a striated cuticle with the first annule wide with four lobes and the second annule divided in twelve lobes. The male have three pairs of preanal papillae and two pairs of postanal papillae. Key words: Cephalobellus lobulata n. sp. - Thelastomatidae - Gryllotalpidae - parasite - cricket - taxonomy - Argentina The genus Cephalobellus was proposed by dissected them in Petri dishes with distilled water Cobb (1920) who described a nematode from a under microscope stereoscope. We found the nema- beetle larva under the name of C. papilliger. He todes (males and females) in the stomodeo intesti- described only the male without any diagram of nal of the insects and then they were killed in dis- the nematode. Christie (1933) described the genus tilled water at 60ºC during 2 min. Posteriorly they Scarabanema as a synonym of Cephalobellus (both were put in a solution of distilled water + TAF (1:1) males were identical), putting S. cylindricum as a during 48 h, finally we finished the fixed in pure synonym of C. papilliger. Basir (1956) recognized TAF. six species from Europe, USA, North India and Living and fixed specimens were employed for Brazil.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Mole Cricket: Scapteriscus Vicinus Shortwinged Mole Cricket: Scapteriscus Abbreviatus
    Tawny Mole Cricket: Scapteriscus vicinus Shortwinged Mole Cricket: Scapteriscus abbreviatus Biology & Lifecycle: Adults and larger nymphs chew on stems of seedlings and smaller plants at the soil surface. The tawny mole cricket has one generation each year and overwinters as adults, which lay eggs in April through early June. Nymphs grow slowly through the summer months and start becoming adults in September. The shortwinged mole cricket is almost restricted to coastal areas. Most eggs are laid in late spring through early summer. Females of both species lay clutches of eggs in underground egg chambers. Environmental Factors: Tawny and shortwinged mole crickets are present year-around, with adults and large nymphs overwintering but inactivated by cold temperatures and drought (they burrow deeper underground). Irrigation during drought allows them to be active. Flooding forces them to migrate to higher ground. Adult: Adults are large, about 1¼ inches, with wings longer than body (tawny mole cricket (Figure 3)) or very much shorter than body (shortwinged mole cricket (Figure 1)). Both adults and nymphs have enlarged and toothed forelegs for digging; expanded femurs (base of the hind legs) for jumping, although only nymphs jump. All species have soft bodies, with the middle body section protected by a hardened cover (pronotum). Immature: Nymphs range from less than 1/8 inch at hatching to about 1 inch several months later, resembling the adults but without trace of wings in the first 4 instars and with small wing buds in later instars. The number of molts varies from 6 to 9 (Figure 5). Host range: Both species attack seedlings of eggplant, sweet pepper, tobacco, tomato and cabbage.
    [Show full text]
  • Visit the National Academies Press Online, the Authoritative Source For
    http://www.nap.edu/catalog/10134.html We ship printed books within 1 business day; personal PDFs are available immediately. Compensating for Wetland Losses Under the Clean Water Act Committee on Mitigating Wetland Losses, Board on Environmental Studies and Toxicology, Water Science and Technology Board, National Research Council ISBN: 0-309-50290-X, 348 pages, 6 x 9, (2001) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/10134.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online for free • Explore our innovative research tools – try the “Research Dashboard” now! • Sign up to be notified when new books are published • Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. Compensating for Wetland Losses Under the Clean Water Act http://www.nap.edu/catalog/10134.html COMPENSATING FOR WETLAND LOSSES UNDER THE CLEAN WATER ACT Committee on Mitigating Wetland Losses Board on Environmental Studies and Toxicology Water Science and Technology Board Division on Earth and Life Studies National Research Council NATIONAL ACADEMY PRESS Washington, D.C.
    [Show full text]
  • New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
    Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed.
    [Show full text]
  • Octubre, 2014. No. 7 Editores Celeste Mir Museo Nacional De Historia Natural “Prof
    Octubre, 2014. No. 7 Editores Celeste Mir Museo Nacional de Historia Natural “Prof. Eugenio de Jesús Marcano” [email protected] Calle César Nicolás Penson, Plaza de la Cultura Juan Pablo Duarte, Carlos Suriel Santo Domingo, 10204, República Dominicana. [email protected] www.mnhn.gov.do Comité Editorial Alexander Sánchez-Ruiz BIOECO, Cuba. [email protected] Altagracia Espinosa Instituto de Investigaciones Botánicas y Zoológicas, UASD, República Dominicana. [email protected] Ángela Guerrero Escuela de Biología, UASD, República Dominicana Antonio R. Pérez-Asso MNHNSD, República Dominicana. Investigador Asociado, [email protected] Blair Hedges Dept. of Biology, Pennsylvania State University, EE.UU. [email protected] Carlos M. Rodríguez MESCyT, República Dominicana. [email protected] César M. Mateo Escuela de Biología, UASD, República Dominicana. [email protected] Christopher C. Rimmer Vermont Center for Ecostudies, EE.UU. [email protected] Daniel E. Perez-Gelabert USNM, EE.UU. Investigador Asociado, [email protected] Esteban Gutiérrez MNHNCu, Cuba. [email protected] Giraldo Alayón García MNHNCu, Cuba. [email protected] James Parham California State University, Fullerton, EE.UU. [email protected] José A. Ottenwalder Mahatma Gandhi 254, Gazcue, Sto. Dgo. República Dominicana. [email protected] José D. Hernández Martich Escuela de Biología, UASD, República Dominicana. [email protected] Julio A. Genaro MNHNSD, República Dominicana. Investigador Asociado, [email protected] Miguel Silva Fundación Naturaleza, Ambiente y Desarrollo, República Dominicana. [email protected] Nicasio Viña Dávila BIOECO, Cuba. [email protected] Ruth Bastardo Instituto de Investigaciones Botánicas y Zoológicas, UASD, República Dominicana. [email protected] Sixto J. Incháustegui Grupo Jaragua, Inc.
    [Show full text]
  • Steinernema Neocurtillis N. Sp
    JOURNAL OF NEMATOLOGY VOLUME 24 DECEMBER 1992 NUMBER 4 Journal of Nematology 24(4):463--477. 1992. © The Society of Nematologists 1992. Steinernema neocurtillis n. sp. (Rhabditida: Steinernematidae) and a Key to Species of the Genus Steinernema 1 KHUONG B. NGUYEN AND GROVER C. SMART, JR. 2 Abstract: Steinernema neocurtillis n. sp. isolated from the mole cricketNeocurtilla hexadactyla Perty can be distinguished from other members of the genus by characteristics of the first-generation male and the third-stage infective juvenile (IJ). In the male, the distance from the anterior end to the excretory pore (DAE) is less than the body width at the excretory pore; D% (DAE divided by length of esophagus x 100) is low at 19. The gubernaculum l~figth is greater than three-fourths the spicule length. Range of the ratio gubernaculum length divided by spicule length is 0.82-0.93 in the first- generation male and 0.92-1.00 in the second-generation male. In the IJ, the distance fl-om the anterior end to the excretory pore is extremely short (18 p~m), causing the D% and E% (DAE divided by tail length x 100) to be low (D% = 23 and E% = 12). Average body length of the IJ is 885 ~m. Key words: entomopathogenic nematode, mole cricket parasite, morphology, nematode, new spe- cies, Neocurtilla hexadactyla, Steinernema neocurtillis n. sp., taxonomy. A survey of the nematode parasites and We describe the nematode herein as associates of the mole crickets Scapteriscus Steinernema neocurtillis n. sp., named after boreUii Giglio-Tos, S. vicinus Scudder, S.
    [Show full text]
  • Indiana Ensifera (Orthopera)
    The Great Lakes Entomologist Volume 9 Number 1 - Spring 1976 Number 1 - Spring 1976 Article 2 April 1976 Indiana Ensifera (Orthopera) W. P. McCafferty J. L. Stein Purdue University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation McCafferty, W. P. and Stein, J. L. 1976. "Indiana Ensifera (Orthopera)," The Great Lakes Entomologist, vol 9 (1) Available at: https://scholar.valpo.edu/tgle/vol9/iss1/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. McCafferty and Stein: Indiana Ensifera (Orthopera) INDIANA ENSIFERA (ORTHOPERA) and J. L. Stein Department of Entomology Purdue University West Lafayette, Indiana 47907 Published by ValpoScholar, 1976 1 The Great Lakes Entomologist, Vol. 9, No. 1 [1976], Art. 2 https://scholar.valpo.edu/tgle/vol9/iss1/2 2 McCafferty and Stein: Indiana Ensifera (Orthopera) THE GREAT LAKES ENTOMOLOGIST INDIANA ENSIFERA (ORTHOPERA)' W. P. McCafferty and J. L. Stein2 A total of 67 species of long-horned grasshoppers and crickets were reported to occur in Indiana by Blatchley (1903) in his "Orthoptera of Indiana." Distributional information concerning thek species was sparse and has not been significantly supplemented since that time. Subsequent works which have dealt either heavily or exclusively with the Indiana fauna include Fox (1915), Blatchley (1920), Cantrall and Young (1954), and Young and Cantrall(1956).
    [Show full text]
  • Acquired Natural Enemies of Oxyops Vitiosa 1
    Christensen et al.: Acquired Natural Enemies of Oxyops vitiosa 1 ACQUIRED NATURAL ENEMIES OF THE WEED BIOLOGICAL CONTROL AGENT OXYOPS VITIOSA (COLEPOTERA: CURCULIONIDAE) ROBIN M. CHRISTENSEN, PAUL D. PRATT, SHERYL L. COSTELLO, MIN B. RAYAMAJHI AND TED D. CENTER USDA/ARS, Invasive Plant Research Laboratory, 3225 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT The Australian curculionid Oxyops vitiosa Pascoe was introduced into Florida in 1997 as a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) S. T. Blake. Pop- ulations of the weevil increased rapidly and became widely distributed throughout much of the invasive tree’s adventive distribution. In this study we ask if O. vitiosa has acquired nat- ural enemies in Florida, how these enemies circumvent the protective terpenoid laden exu- dates on larvae, and what influence 1 of the most common natural enemies has on O. vitiosa population densities? Surveys of O. vitiosa populations and rearing of field-collected individ- uals resulted in no instances of parasitoids or pathogens exploiting weevil eggs or larvae. In contrast, 44 species of predatory arthropods were commonly associated (>5 individuals when pooled across all sites and sample dates) with O. vitiosa. Eleven predatory species were ob- served feeding on O. vitiosa during timed surveys, including 6 pentatomid species, 2 formi- cids and 3 arachnids. Species with mandibulate or chelicerate mouthparts fed on adult stages whereas pentatomids, with haustellate beaks, pierced larval exoskeletons thereby by- passing the protective larval coating. Observations of predation were rare, with only 8% of timed surveys resulting in 1 or more instances of attack. Feeding by the pentatomid Podisus mucronatus Uhler accounted for 76% of all recorded predation events.
    [Show full text]
  • A Parasitic Flythat Kills Mole Crickets Identifying Natural Parasites for Mole Crickets As Part of a Long-Term Control Strategy
    A Parasitic FlyThat Kills Mole Crickets Identifying natural parasites for mole crickets as part of a long-term control strategy. BY HOWARD FRANK of Florida Mole Cricket Research Pro- gram began to investigate and import those natural enemies in the 1980s. Currently, two of those imported natural enemies are established year- round in the Gainesville, Florida, area. Together they provide about 95% con- trol of tawny 'and short-winged mole crickets.2 Numbers of tawny and south- ern mole crickets in the Gainesville area are about 95% less than they were in the 1980s due to action of another wasp (Larra bicolor) and another bene- ficial nematode (Steinernema scapterisCl) from South America. What is remarkable about these imported wasps and nematodes is that they now occur all around the Gaines- An Ormia depleta pupa next to a dead adult mole cricket. The mole cricket was killed by an Ormia depleta larva that then became this pupa. Up to five fly larvae may develop successfully in an adult mole ville area and provide area-wide control cricket, and the process is always fatal to the mole cricket regardless of the number of fly larvae. for free.Year by year the area occupied by this wasp and nematode keeps rom coastal North Carolina south enemies that keep its numbers in check. increasing naturally, so that the area to Florida and west to Texas, mole These natural enemies include a wasp where mole crickets are controlled Fcrickets are major problems on (Larra analis) and a beneficial nematode expands. golf courses. Huge sums of money are (Steinernema neocurtillae) that seems to This article is about a third biological spent on pesticides every year to control attack only this species of mole cricket.
    [Show full text]
  • Hole Notes the Official Publication of the MGCSA
    Norma O’Leary CGCS MGCSA 2017 Champion Hole Notes The Official Publication of the MGCSA Vol. 52, No. 8 September, 2017 Page 2 ank You Annual MGCSA Sponsors ORIGINATION, INC. Page 3 Never too early to plan ahead ... Check out the Jacobsen HR Series of wide-area rotary mowers. Ask us about custom The HR Series sets a new industry standard nancing! for the most efficient use of power! • Compact chassis design • Less weight = more power for mowing • Highest power to weight ratio in class • Improved fuel economy HR800 Adam Hoffman Ph: 612-802-3149 • Nick Sherer Ph: 612-308-0102 • Mitch Stewart Ph: 515-240-8874 PAR AIDE 1710 Alexander Road • Eagan, MN 55121 • www.Turfwerks.com October 2 The Scramble Edina Golf and Country Club Host Brandon Schindele October 9 The Wee One Brackett’s Crossing Country Club Host Tom Proshek It Wouldn’t Be The Same Without YOU Page 4 CONTENTS Vol. 52, No. 8 September, 2017 Feature Articles: Protecting Trees and Shrubs Against Winter Damage pages 22 - 32 by Dr. Bert Swanson and Richard Rideout Winter Is Coming, Is Your Pump Station Ready? pages 38 - 41 By By Mike Whitacre, Craig Vigen and Jim Dougherty, Ferguson Waterworks Strange ings You Can Find In Turf pages 42 - 49 By Dr. Vera Krischik, UMN Entomology Extension EDITOR Charles Erickson Selected for the Golf Hall of Fame pages 50 - 53 DAVE KAZMIERCZAK, CGCS DAVEPRESTWICK.COMCASTBIZ.NET by MGA and Hole Notes Magazine MDA Personal Protective Gear pages 54 - 56 Monthly Columns: Presidential Perspective pages 6 - 7 By Erin McManus In Bounds pages 8 - 11 By Jack MacKenzie, CGCS Edina Country Club is prepared for The On The Cover: Scramble Golf Tournament.
    [Show full text]