Coconino Plateau Groundwater Withdrawal Scenario Report

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Prepared in cooperation with the Arizona Department of Water Resources and Yavapai County Simulation of Groundwater Withdrawal Scenarios for the Redwall-Muav and Coconino Aquifer Systems of Northern and Central Arizona Scientific Investigations Report 2016–5115 U.S. Department of the Interior U.S. Geological Survey COVER Elevated, northwest-looking Google Earth view of Flagstaff, Arizona, in the foreground, the Coconino Plateau in the center, and Grand Canyon in the upper part of the image. Image Landsat from Google (2016). Simulation of Groundwater Withdrawal Scenarios for the Redwall-Muav and Coconino Aquifer Systems of Northern and Central Arizona By D.R. Pool Prepared in cooperation with the Arizona Department of Water Resources and Yavapai County Scientific Investigations Report 2016–5115 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Pool, D.R., 2016, Simulation of groundwater withdrawal scenarios for the Redwall-Muav and Coconino aquifer sys- tems of northern and central Arizona: U.S. Geological Survey Scientific Investigations Report 2016–5115, 38 p., http://dx.doi.org/10.3133/sir20165115. ISSN 2328-0328 (online) iii Contents Abstract ..........................................................................................................................................................1 Introduction.....................................................................................................................................................2 Climate ....................................................................................................................................................2 Vegetation ..............................................................................................................................................4 Land and Water Use .............................................................................................................................4 Regional Hydrogeology .................................................................................................................................4 Aquifer Geology and Structure ...........................................................................................................4 Aquifers .........................................................................................................................................5 Proterozoic Basement .......................................................................................................5 Redwall-Muav Aquifer .......................................................................................................5 Coconino Aquifer ................................................................................................................6 Alluvial Aquifers ..................................................................................................................6 Structure........................................................................................................................................6 Description of the Northern Arizona Regional Groundwater Flow Model ...........................................6 Withdrawal Scenarios ..................................................................................................................................8 Water Uses ..........................................................................................................................................10 Scenario 1 ............................................................................................................................................14 Scenario 2 ............................................................................................................................................14 Scenario 3 ............................................................................................................................................15 Additional Scenario Assumptions ....................................................................................................15 Small Private and Stock Well Withdrawals ...........................................................................15 Natural Recharge Rates ...........................................................................................................16 Incidental Recharge Rates .......................................................................................................16 Drying of Model Cells During the Scenario Simulations .....................................................16 Simulated Effects of Withdrawal Scenarios ...........................................................................................18 Initial Conditions for the Scenarios .................................................................................................18 Scenario Simulation Results .............................................................................................................21 Simulated Changes in Water Levels .......................................................................................21 Scenario 1 ..........................................................................................................................21 Scenarios 2 and 3 .............................................................................................................21 Simulated Changes in Groundwater Discharge ...................................................................25 Scenario 1 ..........................................................................................................................25 Scenarios 2 and 3 .............................................................................................................26 Model Limitations................................................................................................................................27 Summary........................................................................................................................................................28 References ....................................................................................................................................................30 Appendix 1.....................................................................................................................................................33 Appendix 2.....................................................................................................................................................35 Appendix 3.....................................................................................................................................................37 iv Figures 1. Map of the area within the Coconino Plateau Water Advisory Council groundwater with- drawal scenarios ..........................................................................................................................3 2. Conceptualized relations among major hydrogeologic units and the Northern Arizona Regional Groundwater-Flow Model layers...............................................................................7 3. Graphs of projected groundwater withdrawals by major water users for future withdrawal scenarios ........................................................................................................................................9 4. Map of the generalized groundwater-flow system initial conditions ..........................................11 5. Map of water-level change for scenario 1 in the uppermost model layer from 2006 through 2105 near the Coconino Plateau Water Advisory Council scenario region and sur- rounding areas, Arizona ............................................................................................................22 6. Map of the difference in water-level change in the uppermost model layer compared with scenario 1 from 2006 to 2105 near the Coconino Plateau Water Advisory Council Sce- nario region and surrounding areas ........................................................................................23 7. Graph of sources of water, storage or surface-water flow and evapotranspiration, to a pumped well through time .........................................................................................................26 8. Simulated changes in groundwater discharge to major perennial surface water features from 2006 through 2105 in and near the Coconino Plateau Water Advisory Council scenario region ...........................................................................................................................27 Tables 1. Withdrawal wells that were not included in the original Northern Arizona Regional Ground-
Recommended publications
  • Arizona TIM PALMER FLICKR

    Arizona TIM PALMER FLICKR

    Arizona TIM PALMER FLICKR Colorado River at Mile 50. Cover: Salt River. Letter from the President ivers are the great treasury of noted scientists and other experts reviewed the survey design, and biological diversity in the western state-specific experts reviewed the results for each state. RUnited States. As evidence mounts The result is a state-by-state list of more than 250 of the West’s that climate is changing even faster than we outstanding streams, some protected, some still vulnerable. The feared, it becomes essential that we create Great Rivers of the West is a new type of inventory to serve the sanctuaries on our best, most natural rivers modern needs of river conservation—a list that Western Rivers that will harbor viable populations of at-risk Conservancy can use to strategically inform its work. species—not only charismatic species like salmon, but a broad range of aquatic and This is one of 11 state chapters in the report. Also available are a terrestrial species. summary of the entire report, as well as the full report text. That is what we do at Western Rivers Conservancy. We buy land With the right tools in hand, Western Rivers Conservancy is to create sanctuaries along the most outstanding rivers in the West seizing once-in-a-lifetime opportunities to acquire and protect – places where fish, wildlife and people can flourish. precious streamside lands on some of America’s finest rivers. With a talented team in place, combining more than 150 years This is a time when investment in conservation can yield huge of land acquisition experience and offices in Oregon, Colorado, dividends for the future.
  • • UNITED STATES DEPARTMENT of the INTERIOR Fish and Wildlife

    • UNITED STATES DEPARTMENT of the INTERIOR Fish and Wildlife

    •UNITED STATES DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Bureau of Sport Fisheries and Wildlife Division of Fishery Services Phoenix, Arizona Progress Report • FISHERY MANAGEMENT PROGRAM Black and Salt Rivers Ft. Apache and San Carlos Apache Indian ,Reservations Arizona January 21, 1966 February 3, 1966 Initial Report Black and Salt Rivers Ft. Apache and San Carlos Apache Indian Reservations Arizona Introduction During the past several years, the Bureau of Sport'Fisheries'and Wildlife, in cooperation with the Bureau of Indian Affairs, has-intensified its fishery managementi assistance to the Ft. Apache and San Carlos Indian Reservations. During this period many reports summarizing fishery management activities have been submitted. None, however, has dealt with the important Black and Salt Rivers or their fishery potential. This report summarizes the- results of preliminary fishery investigations on the Salt and Black Rivers, including fishery potentials, and Is directed to the Tribal organization and•agencies of the San Carlos and Ft.-Apache Indian Reservations. The Black and Salt Rivers of Arizona flow through some of the most- spectacular canyons of the Southwest. The Salt River Canyon crossing at Highway 60 is often referred to as.the second-Grand Canyon of Arizona, with vividly colored canyon walls rising vertically more than 3,000. feet. The Black River follows a major - - - rift through basalt rock that is often narrow and exceeds 26000 feet in depth in many places. Canyons, alternately widening and boxing, extending from alpine to upper sonorian life zones, are characteristic of the study area Stands of virgin . spruce and ponderosa pine lend beauty to the.
  • Arizona Fishing Regulations 3 Fishing License Fees Getting Started

    Arizona Fishing Regulations 3 Fishing License Fees Getting Started

    2019 & 2020 Fishing Regulations for your boat for your boat See how much you could savegeico.com on boat | 1-800-865-4846insurance. | Local Offi ce geico.com | 1-800-865-4846 | Local Offi ce See how much you could save on boat insurance. Some discounts, coverages, payment plans and features are not available in all states or all GEICO companies. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. GEICO is a registered service mark of Government Employees Insurance Company, Washington, D.C. 20076; a Berkshire Hathaway Inc. subsidiary. TowBoatU.S. is the preferred towing service provider for GEICO Marine Insurance. The GEICO Gecko Image © 1999-2017. © 2017 GEICO AdPages2019.indd 2 12/4/2018 1:14:48 PM AdPages2019.indd 3 12/4/2018 1:17:19 PM Table of Contents Getting Started License Information and Fees ..........................................3 Douglas A. Ducey Governor Regulation Changes ...........................................................4 ARIZONA GAME AND FISH COMMISSION How to Use This Booklet ...................................................5 JAMES S. ZIELER, CHAIR — St. Johns ERIC S. SPARKS — Tucson General Statewide Fishing Regulations KURT R. DAVIS — Phoenix LELAND S. “BILL” BRAKE — Elgin Bag and Possession Limits ................................................6 JAMES R. AMMONS — Yuma Statewide Fishing Regulations ..........................................7 ARIZONA GAME AND FISH DEPARTMENT Common Violations ...........................................................8 5000 W. Carefree Highway Live Baitfish
  • Arizona Historic Bridge Inventory

    Arizona Historic Bridge Inventory

    STATE OF ARIZONA HISTORIC PROF€RlY INVENTORY FORM Salt River Bridge PROPERTY IENTlRCAllON county Gila Inventory nmbu W037 milepost 262.44 inventory route SR 288 locadon 04.3 M N Jct SR 88 featwe lhsoctad Salt River citylvimnity Rooaevelt USOS quadrangle Salt River Peak disk id 83 UTM rmferma 12.507250.3719952 STRUCTURAL INFORMATION main span number 1 main rpan type 310 appr. rpan number 0 appr. type degreeof rkw 0 guardrail type 6 main span length 215.0 swstructure steel rigid-conneded Parker through truaa struave length 220.0 subatrwhre concrete abutments and wingwah on spread footlngs roadway width 18.2 fioor/docking concrwte deck over steel atringen, structuo width 19.3 othu features lower chord: 2 channels w/ double ladna; umer chord: 2 channels w/ cover plate and do-&&dng; vertlcd 2 channela wlth king: diagonal: 2 channels or 2 angles w/ Menplates; floor beam: I-beam: steel pipe gwdds' HISTORICPL INORMATION eonstruaion date 1920 deslgnsr/enginssr US Bureau of Public Rwds project number FHP 12-E builder/mntraaor information sour- ADOT brldge records structve owm Arlzona DepmZrnent of Transportation alteradon datda) alteradom NATlONA REGISTER EVAUATION For add'hnal infwrnation, sw "Vehicular Bridges in Pvirona 1880-1964" Nadonal Reglstw Multiple Propwly Documentation Form NRHP digibility bted MIHPaHwla A x 6- C~ signif. statement longest and oldest riveted through twsin Arizona FORM COMRmD BY Clayton B. Fraesr, Prhdpal FRASERdeslgn 420 South County Road 23E Loveland, Colodo 80537 31 Oaober 2004 SALT RIVER BRIDGE PHOTO INFORMPTlON dw of phom.: November 2002 vkw && south east ~na:02.11.287 02.11.288 32 1 FRASERDESIQN SALT RIVER BRIDGE CONSTRUCTION HISTORY In 1918 the newly formed U.S.
  • Havasupai Nation Field Trip May 16 – 20, 2012 by Melissa Armstrong

    Havasupai Nation Field Trip May 16 – 20, 2012 by Melissa Armstrong

    Havasupai Nation Field Trip May 16 – 20, 2012 By Melissa Armstrong The ESA SEEDS program had a field trip to Flagstaff, AZ the Havasupai Nation in Western Grand Canyon from May 16 – 20, 2012 as part of the Western Sustainable Communities project with funding from the David and Lucille Packard Foundation. The focus of the field trip was on water sustainability of the Colorado River Basin from a cultural and ecological perspective. The idea for this field trip arose during the Western Regional Leadership Meeting held in Flagstaff in April 2011 as a way to ground our meeting discussions in one of the most iconic places of the Colorado Plateau – the Grand Canyon. SEEDS alumnus Hertha Woody helped ESA connect with the Havasupai Nation; she worked closely with the former Havasupai tribal council during her tenure with Grand Canyon Trust as a tribal liaison. Hertha was instrumental in the planning of this experience for students. In attendance for this field trip were 17 undergraduate and graduate students, 1 alumnus, 1 Chapter advisor, and 2 ESA staff members (21 people total), representing eight Chapter campuses (Dine College Tuba City and Shiprock campuses, ASU, NAU, UNM, SIPI, NMSU, Stanford) – See Appendix A. The students were from a diverse and vibrant background; 42% were Native American, 26% White, 26% Hispanic and 5% Asian. All four of our speakers were Native American. The overall experience was profound given the esteem and generosity of the people who shared their knowledge with our group, the scale of the issues that were raised, the incredibly beautiful setting of Havasu Canyon, and the significant effort that it took to hike to Supai Village and the campgrounds – approximately 30 miles in three days at an elevation change of 1,500 feet each way.
  • Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010

    Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010

    Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010 Prepared by: USDA Natural Resources Conservation Service University of Arizona, Water Resources Research Center In cooperation with: Coconino Natural Resource Conservation District Arizona Department of Agriculture Arizona Department of Environmental Quality Arizona Department of Water Resources Arizona Game & Fish Department Arizona State Land Department USDA Forest Service USDA Bureau of Land Management Released by: Sharon Megdal David L. McKay Director State Conservationist University of Arizona United States Department of Agriculture Water Resources Research Center Natural Resources Conservation Service Principle Investigators: Dino DeSimone – NRCS, Phoenix Keith Larson – NRCS, Phoenix Kristine Uhlman – Water Resources Research Center Terry Sprouse – Water Resources Research Center Phil Guertin – School of Natural Resources The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disa bility, po litica l be lie fs, sexua l or ien ta tion, an d mar ita l or fam ily s ta tus. (No t a ll prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal employment opportunity provider and employer. Havasu Canyon Watershed serve as a platform for conservation 15010004 program delivery, provide useful 8-Digit Hydrologic Unit information for development of NRCS Rapid Watershed Assessment and Conservation District business plans, and lay a foundation for future cooperative watershed planning.
  • PRELIMINARY REPORT of INVESTIGATIONS of SPRINGS in the MOGOLLON RIM REGION, ARIZONA By

    PRELIMINARY REPORT of INVESTIGATIONS of SPRINGS in the MOGOLLON RIM REGION, ARIZONA By

    United States Department of the Interior Geological Survey PRELIMINARY REPORT OF INVESTIGATIONS OF SPRINGS IN THE MOGOLLON RIM REGION, ARIZONA By J. H. Feth With sections on: Base flow of streams By N. D. White and Quality of water By J. D. Hem Open-file report. Not reviewed for conformance with editorial standards of the Geological Survey. Tucson, Arizona June 1954 CONTENTS Page Abstract ................................................... 1 Introduction................................................. 3 Purpose and scope of investigation.......................... 3 Location and extent of area ................................ 4 Previous investigations.................................... 5 Personnel and acknowledgments ............................ 5 Geography .................................................. 6 Land forms and physiographic history ...................... 6 Drainage ................................................ 6 Climate ................................................. 6 Development and industry.................................. 8 Minerals"................................................. 9 Water ................................................... 9 Geology .................................................... 10 Stratigraphy ............................................. 10 Rocks of pre-Mesozoic age ............................. 10 Upper Cretaceous sedimentary rocks .................... 10 Tertiary and Quaternary sedimentary rocks .............. 11 Lake beds .......................................... 11 San Carlos basin
  • Maricopa County Regional Trail System Plan

    Maricopa County Regional Trail System Plan

    Maricopa County Regional Trail System Plan Adopted August 16, 2004 Maricopa Trail Maricopa County Trail Commission Maricopa County Department of Transportation Maricopa County Parks and Recreation Maricopa County Planning and Development Flood Control District of Maricopa County We have an obligation to protect open spaces for future generations. Maricopa County Regional Trail System Plan VISION Our vision is to connect the majestic open spaces of the Maricopa County Regional Parks with a nonmotorized trail system. The Maricopa Trail Maricopa County Regional Trail System Plan - page 1 Credits Maricopa County Board of Supervisors Andrew Kunasek, District 3, Chairman Fulton Brock, District 1 Don Stapley, District 2 Max Wilson, District 4 Mary Rose Wilcox, District 5 Maricopa County Trail Commission Supervisor Max Wilson, District 4 Chairman Supervisor Andrew Kunasek, District 3 Parks Commission Members: Citizen Members: Laurel Arndt, Chair Art Wirtz, District 2 Randy Virden, Vice-Chair Jim Burke, District 3 Felipe Zubia, District 5 Stakeholders: Carol Erwin, Bureau of Reclamation (BOR) Fred Pfeifer, Arizona Public Service (APS) James Duncan, Salt River Project (SRP) Teri Raml, Bureau of Land Management (BLM) Ex-officio Members: William Scalzo, Chief Community Services Officer Pictured from left to right Laurel Arndt, Supervisor Andy Kunasek, Fred Pfeifer, Carol Erwin, Arizona’s Official State Historian, Marshall Trimble, and Art Wirtz pose with the commemorative branded trail marker Mike Ellegood, Director, Public Works at the Maricopa Trail
  • Grand Canyon

    Grand Canyon

    ALT ALT To 389 To 389 To Jacob Lake, 89 To 89 K and South Rim a n a b Unpaved roads are impassable when wet. C Road closed r KAIBAB NATIONAL FOREST e in winter e K k L EA O N R O O B K NY O A E U C C N T E N C 67 I A H M N UT E Y SO N K O O A N House Rock Y N N A Buffalo Ranch B A KANAB PLATEAU C C E A L To St. George, Utah N B Y Kaibab Lodge R Mount Trumbull O A N KAIBAB M 8028ft De Motte C 2447m (USFS) O er GR C o Riv AN T PLATEAU K HUNDRED AND FIFTY MIL lorad ITE ap S NAVAJO E Co N eat C A s C Y RR C N O OW ree S k M INDIAN GRAND CANYON NATIONAL PARK B T Steamboat U Great Thumb Point Mountain C RESERVATION K 6749ft 7422ft U GREAT THUMB 2057m 2262m P Chikapanagi Point MESA C North Rim A 5889ft E N G Entrance Station 1795m M Y 1880ft FOSSIL R 8824ft O Mount Sinyala O U 573m G A k TUCKUP N 5434ft BAY Stanton Point e 2690m V re POINT 1656m 6311ft E U C SB T A C k 1924m I E e C N AT A e The Dome POINT A PL N r o L Y Holy Grail l 5486ft R EL Point Imperial C o Tuweep G W O Temple r 1672m PO N Nankoweap a p d H E o wea Mesa A L nko o V a Mooney D m N 6242ft A ID Mount Emma S Falls u 1903m U M n 7698ft i Havasu Falls h 2346m k TOROWEAP er C Navajo Falls GORGE S e v A Vista e i ITE r Kwagunt R VALLEY R N N Supai Falls A Encantada C iv o Y R nt Butte W d u e a O G g lor Supai 2159ft Unpaved roads are North Rim wa 6377ft r o N K h C Reservations required.
  • A Conceptual Hydrogeologic Model for Fossil Springs, Western

    A Conceptual Hydrogeologic Model for Fossil Springs, Western

    A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WESTERN MOGOLLON RIM, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES By L. Megan Green A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Northern Arizona University May 2008 Approved: _________________________________ Abraham E. Springer, Ph.D., Chair _________________________________ Roderic A. Parnell, Jr., Ph.D. _________________________________ Paul J. Umhoefer, Ph.D. ABSTRACT A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WEST MOGOLLON MESA, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES L. Megan Green Fossil Springs is the largest spring system discharging along the western Mogollon Rim in central Arizona and is a rare and important resource to the region. The purpose of this study was to gain a better understanding of the source of groundwater discharging at Fossil Springs. This was accomplished by (1) constructing a 3-D digital hydrogeologic framework model from available data to depict the subsurface geology of the western Mogollon Rim region and (2) by compiling and interpreting regional structural and geophysical data for Arizona’s central Transition Zone. EarthVision, a 3-D GIS modeling software, was used to construct the framework model. Two end-member models were created; the first was a simple interpolation of the data and the second was a result of geologic interpretations. The second model shows a monocline trending along the Diamond Rim fault. Both models show Fossil Springs discharging at the intersection of the Diamond Rim fault and Fossil Springs fault, at the contact between the Redwall Limestone and Naco Formation. The second objective of this study was a compilation of regional data for Arizona’s central Transition Zone.
  • Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And

    Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And

    1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail.
  • Arizona Historic Bridge Inventory | Pages 164-191

    Arizona Historic Bridge Inventory | Pages 164-191

    NPS Form 10-900-a OMB Approval No. 1024-0018 (8-86) United States Department of the Interior National Park Service National Register of Historic Places Continuation Sheet section number G, H page 156 V E H I C U L A R B R I D G E S I N A R I Z O N A Geographic Data: State of Arizona Summary of Identification and Evaluation Methods The Arizona Historic Bridge Inventory, which forms the basis for this Multiple Property Documentation Form [MPDF], is a sequel to an earlier study completed in 1987. The original study employed 1945 as a cut-off date. This study inventories and evaluates all of the pre-1964 vehicular bridges and grade separations currently maintained in ADOT’s Structure Inventory and Appraisal [SI&A] listing. It includes all structures of all struc- tural types in current use on the state, county and city road systems. Additionally it includes bridges on selected federal lands (e.g., National Forests, Davis-Monthan Air Force Base) that have been included in the SI&A list. Generally not included are railroad bridges other than highway underpasses; structures maintained by federal agencies (e.g., National Park Service) other than those included in the SI&A; structures in private ownership; and structures that have been dismantled or permanently closed to vehicular traffic. There are exceptions to this, however, and several abandoned and/or privately owned structures of particular impor- tance have been included at the discretion of the consultant. The bridges included in this Inventory have not been evaluated as parts of larger road structures or historic highway districts, although they are clearly integral parts of larger highway resources.