A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005

Total Page:16

File Type:pdf, Size:1020Kb

A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005 A WATER QUALITY INVESTIGATION OF SEVENTEEN GRAND CANYON TRIBUTARIES: JULY 2004 – MAY 2005 i A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005 ______________________________________________________________________________ Prepared by Division of Water Surface Water Section Monitoring Unit 1110 W. Washington Street Phoenix, Arizona 85007 Lin Lawson, Editor Contributors Lee Johnson Jason Jones Doug McCarty Kyle Palmer Steven Pawlowski Sam Rector Patti Spindler Roland Williams The Arizona Department of Environmental Quality shall preserve, protect and enhance the environment and public health, and shall be a leader in the development of public policy to maintain and improve the quality of Arizona’s air, land and water resources. Printed on recycled paper Publication Number OFR-07-04 i A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005 ______________________________________________________________________________ ACKNOWLEDGEMENTS This report could not have been written without the hard work and dedication of the following ADEQ staff who worked on the field crews in the heat of the summer and in the cold rains of winter: Roland Williams, Lee Johnson, Doug McCarty, Kyle Palmer, Sam Rector, Patti Spindler, Susan Fitch, Amanda Fawley, Jennifer Hickman, Jason Sutter, Steve Pawlowski, Marty Schlein, and Andy Salmon. This report would not have been written without the work of Lin Lawson, our editor-in-chief. We’d like to express our thanks to Dr. Emma Benanati, research coordinator at the Grand Canyon National Park Research Office for her assistance in obtaining the necessary Scientific Research and Collecting Permit for this research and for her help on the river. A special thanks goes to Dr. Joseph Shannon, Merriam-Powell Center for Education and Research, at Northern Arizona University for the logistical support, technical advice, and his skills as a professional boatman and river trip leader. It simply would not have been possible to conduct this research without his assistance and leadership. This research was funded by the Arizona Department of Environmental Quality. We are grateful to ADEQ management for approving the funding for this data collection effort. A special thanks goes to Karen Smith, former Director of the Water Quality Division and Linda Taunt, current Deputy Director of the Water Quality Division for their support for this project. ii A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005 ______________________________________________________________________________ EXECUTIVE SUMMARY The water quality of 17 Colorado River tributaries within Grand Canyon National Park was sampled quarterly from July 2004 through May 2005. Water sample analyses included nutrients, inorganics, suspended sediment concentration, turbidity, Escherichia coli bacteria, total and dissolved metals and trace metals. The water quality of 16 of the tributaries is considered to be good with few exceedences of the state’s water quality standards. An exceedence of the Human Health standard for arsenic occurred once at Crystal Creek. Selenium occurred infrequently with no exceedences of water quality standards. Trace metal sampling revealed three exceedences of the Human Health standard for lead; once at Kanab Creek and twice at the Paria River. There were no exceedences for copper and mercury. Nutrient levels at all sites were generally low except for the Paria River which had high concentrations of phosphorus and organic nitrogen. Suspended sediment fractions were related to rim origin and distance from source water. The Paria River consistently had high turbidity measurements. The presence of E. coli bacteria was minimal and within normal background levels at all tributaries except for the Paria River which had consistently high colony counts and exceedences of the acute and chronic E. coli water quality standards. Loadings of selected parameters at all sample sites were calculated to determine loading contributions to the Colorado River. The Paria River is contributing sizable and sometimes substantial amounts of arsenic, selenium, copper, lead, mercury, nitrogen, phosphorus, total suspended sediments, and E. coli bacteria. Macroinvertebrates were sampled in the spring of 2005 from 13 sites in 12 of the tributaries. However, the samples were classified as “compromised” due to natural flooding conditions at time of sampling and are considered unacceptable for 305(b)/303(d) assessments and listing purposes. Results presented in the report are for informational purposes only. Data revealed that all but one tributary had low macroinvertebrate Index of Biological Integrity scores which cannot be related to water quality but did validate flooding disturbance. iii A Water Quality Investigation of Seventeen Grand Canyon Tributaries: July 2004 – May 2005 ______________________________________________________________________________ TABLE OF CONTENTS Page Acknowledgements...................................................................................................................... iii Executive Summary..................................................................................................................... iv Table of Contents...........................................................................................................................1 Tables.............................................................................................................................................2 Figures............................................................................................................................................3 Appendices.....................................................................................................................................4 Introduction....................................................................................................................................5 Purpose and Scope ...................................................................................................................5 Sampling Design......................................................................................................................6 Sampling sites..........................................................................................................................6 Sampling Duration and Frequency ..........................................................................................8 Target analytes.........................................................................................................................9 Sample Methods...........................................................................................................................10 Water Quality of Grand Canyon Tributaries ...............................................................................11 Water Types – Ionic Composition .........................................................................................12 Arizona Water Quality Standards ..........................................................................................15 Ambient Surface Water Metals..............................................................................................15 Arsenic (As).....................................................................................................................15 Selenium (Se)...................................................................................................................20 Trace Metal Sampling – Copper, Lead, and Mercury .....................................................22 Copper (Cu)...............................................................................................................23 Lead (Pb)....................................................................................................................24 Mercury (Hg).............................................................................................................25 Conclusions – Trace Metals.......................................................................................27 Nutrients.................................................................................................................................29 Suspended Sediment Concentration (SSC)............................................................................35 Turbidity ................................................................................................................................38 Bacteria ..................................................................................................................................41 Results..............................................................................................................................41 Conclusions......................................................................................................................42 Bioassessments and Habitat Assessments of Colorado River Tributary Streams .......................43 Background............................................................................................................................43 Methods and Study Area........................................................................................................44 Overall Bioassessment Results ..............................................................................................45 Geographic Analysis of Biological Results ...........................................................................49
Recommended publications
  • Arizona TIM PALMER FLICKR
    Arizona TIM PALMER FLICKR Colorado River at Mile 50. Cover: Salt River. Letter from the President ivers are the great treasury of noted scientists and other experts reviewed the survey design, and biological diversity in the western state-specific experts reviewed the results for each state. RUnited States. As evidence mounts The result is a state-by-state list of more than 250 of the West’s that climate is changing even faster than we outstanding streams, some protected, some still vulnerable. The feared, it becomes essential that we create Great Rivers of the West is a new type of inventory to serve the sanctuaries on our best, most natural rivers modern needs of river conservation—a list that Western Rivers that will harbor viable populations of at-risk Conservancy can use to strategically inform its work. species—not only charismatic species like salmon, but a broad range of aquatic and This is one of 11 state chapters in the report. Also available are a terrestrial species. summary of the entire report, as well as the full report text. That is what we do at Western Rivers Conservancy. We buy land With the right tools in hand, Western Rivers Conservancy is to create sanctuaries along the most outstanding rivers in the West seizing once-in-a-lifetime opportunities to acquire and protect – places where fish, wildlife and people can flourish. precious streamside lands on some of America’s finest rivers. With a talented team in place, combining more than 150 years This is a time when investment in conservation can yield huge of land acquisition experience and offices in Oregon, Colorado, dividends for the future.
    [Show full text]
  • Scoping Report: Grand Staircase-Escalante National
    CONTENTS 1 Introduction .............................................................................................................................................. 1 2 Scoping Process ....................................................................................................................................... 3 2.1 Purpose of Scoping ........................................................................................................................... 3 2.2 Scoping Outreach .............................................................................................................................. 3 2.2.1 Publication of the Notice of Intent ....................................................................................... 3 2.2.2 Other Outreach Methods ....................................................................................................... 3 2.3 Opportunities for Public Comment ................................................................................................ 3 2.4 Public Scoping Meetings .................................................................................................................. 4 2.5 Cooperating Agency Involvement ................................................................................................... 4 2.6 National Historic Preservation Act and Tribal Consultation ....................................................... 5 3 Submission Processing and Comment Coding .................................................................................... 5
    [Show full text]
  • Relation of Sediment Load and Flood-Plain Formation to Climatic Variability, Paria River Drainage Basin, Utah and Arizona
    Relation of sediment load and flood-plain formation to climatic variability, Paria River drainage basin, Utah and Arizona JULIA B. GRAF U.S. Geological Survey, Water Resources Division, 375 S. Euclid, Tucson, Arizona 85719 ROBERT H. WEBB U.S. Geological Survey, 1675 W. Anklam Road, Tucson, Arizona 85745 RICHARD HEREFORD U.S. Geological Survey, Geologic Division, 2255 North Gemini Drive, Flagstaff, Arizona 86001 ABSTRACT sediment load for a given discharge declined fill that rises 1-5 m above the modern channel abruptly in the early 1940s in the Colorado bed. Flood-plain deposits are present in all Suspended-sediment load, flow volume, River at Grand Canyon (Daines, 1949; Howard, major tributaries of the Paria River. The area of and flood characteristics of the Paria River 1960; Thomas and others, 1960; Hereford, flood plains is slightly greater than 20 km2, and were analyzed to determine their relation to 1987a). The decline in suspended-sediment sediment volume is estimated to be about 40 climate and flood-plain alluviation between loads has been attributed to improved land use million m3 (Hereford, 1987c). Typically, flood 1923 and 1986. Flood-plain alluviation began and conservation measures initiated in the 1930s plains are not present in first-order drainage ba- about 1940 at a time of decreasing magnitude (Hadley, 1977). A change in sediment-sampler sins but are present in basins of second and and frequency of floods in winter, summer, type and in methods of analysis have been higher order where the stream channel is uncon- and fall. No floods with stages high enough to discounted as causes for the observed decrease fined and crosses nonresistant bedrock forma- inundate the flood plain have occurred since (Daines, 1949; Thomas and others, 1960).
    [Show full text]
  • Grand Canyon National Park U.S
    National Park Service Grand Canyon National Park U.S. Department of the Interior The official newspaper North Rim 2015 Season The Guide North Rim Information and Maps Roosevelt Point, named for President Theodore Roosevelt who in 1908, declared Grand Canyon a national monument. Grand Canyon was later established as a national park in 1919 by President Woodrow Wilson. Welcome to Grand Canyon S ITTING ATOP THE K AIBAB a meadow, a mother turkey leading her thunderstorms, comes and goes all too flies from the South Rim, the North Plateau, 8,000 to 9,000 feet (2,400– young across the road, or a mountain quickly, only to give way to the colors Rim offers a very different visitor 2,750 m) above sea level with lush lion slinking off into the cover of the of fall. With the yellows and oranges of experience. Solitude, awe-inspiring green meadows surrounded by a mixed forest. Visitors in the spring may see quaking aspen and the reds of Rocky views, a slower pace, and the feeling of conifer forest sprinkled with white- remnants of winter in disappearing Mountain maple, the forest seems to going back in time are only a few of the barked aspen, the North Rim is an oasis snowdrifts or temporary mountain glow. Crispness in the air warns of winter many attributes the North Rim has in the desert. Here you may observe lakes of melted snow. The summer, snowstorms soon to come. Although to offer. Discover the uniqueness of deer feeding, a coyote chasing mice in with colorful wildflowers and intense only 10 miles (16 km) as the raven Grand Canyon’s North Rim.
    [Show full text]
  • Index 1 INDEX
    Index 1 INDEX A Blue Spring 76, 106, 110, 115 Bluff Spring Trail 184 Adeii Eechii Cliffs 124 Blythe 198 Agate House 140 Blythe Intaglios 199 Agathla Peak 256 Bonita Canyon Drive 221 Agua Fria Nat'l Monument 175 Booger Canyon 194 Ajo 203 Boundary Butte 299 Ajo Mountain Loop 204 Box Canyon 132 Alamo Canyon 205 Box (The) 51 Alamo Lake SP 201 Boyce-Thompson Arboretum 190 Alstrom Point 266, 302 Boynton Canyon 149, 161 Anasazi Bridge 73 Boy Scout Canyon 197 Anasazi Canyon 302 Bright Angel Canyon 25, 51 Anderson Dam 216 Bright Angel Point 15, 25 Angels Window 27 Bright Angel Trail 42, 46, 49, 61, 80, 90 Antelope Canyon 280, 297 Brins Mesa 160 Antelope House 231 Brins Mesa Trail 161 Antelope Point Marina 294, 297 Broken Arrow Trail 155 Apache Junction 184 Buck Farm Canyon 73 Apache Lake 187 Buck Farm Overlook 34, 73, 103 Apache-Sitgreaves Nat'l Forest 167 Buckskin Gulch Confluence 275 Apache Trail 187, 188 Buenos Aires Nat'l Wildlife Refuge 226 Aravaipa Canyon 192 Bulldog Cliffs 186 Aravaipa East trailhead 193 Bullfrog Marina 302 Arch Rock 366 Bull Pen 170 Arizona Canyon Hot Springs 197 Bush Head Canyon 278 Arizona-Sonora Desert Museum 216 Arizona Trail 167 C Artist's Point 250 Aspen Forest Overlook 257 Cabeza Prieta 206 Atlatl Rock 366 Cactus Forest Drive 218 Call of the Canyon 158 B Calloway Trail 171, 203 Cameron Visitor Center 114 Baboquivari Peak 226 Camp Verde 170 Baby Bell Rock 157 Canada Goose Drive 198 Baby Rocks 256 Canyon del Muerto 231 Badger Creek 72 Canyon X 290 Bajada Loop Drive 216 Cape Final 28 Bar-10-Ranch 19 Cape Royal 27 Barrio
    [Show full text]
  • STATE of UTAH DEPARTMENT of NATURAL RESOURCES Technical
    STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES Technical Publication No. 70 GROUND-WATER CONDITIONS IN THE UPPER VIRGIN RIVER AND KANAB CREEK BASINS AREA, UTAH, WITH EMPHASIS ON THE NAVAJO SANDSTONE by R. M. Cordova Hydrologist, U.S. Geological Survey Prepared by the United States Geological Survey in cooperation with The Utah Department of Natural Resources Division of Water Rights 1981 CONTENTS Page Conversion factors VI Abstract 1 Introduction 2 Purpose and scope of the study.................................... 2 Previous studies and acknowledgments 2 Data-site-numbering system........................................ 3 Location and general features of the study area 3 Physiography and drainage 3 Climate 6 CuI ture and economy 9 Geologic setting 9 General characteristics of the rocks 9 General geologic structure 11 Water resources 11 Precipitation 11 Surface water 13 Runoff 13 Chemical quality 13 Ground water 16 General conditions of occurrence 16 Unconsolidated-rock aquifers 17 Consolidated-rock aquifers 19 Hydrologic properties of aquifers 20 Recharge 27 Movement 28 Discharge 30 Seepage to streams 31 Evapotranspiration 31 Springs 33 Wells 35 Subsurface outflow 36 Storage 37 Chemical quality 41 General characteristics 41 Relation to use 47 Public supply 47 Irrigation supply 47 Temperature 49 Possible hydrologic effects of increased ground-water development 50 Interference with existing wells .......................•.......... 50 Shift of the ground-water divide 55 Reduction of streamflow 56 Effects on chemical quality of water 56 Summary and conclusions 57 References cited 59 Publications of the Utah Department of Natural Resources, Division of Water Rights 78 III ILLUSTRATIONS [Plates are in pocket] Plate 1. Map showing selected geohydrologic information in the upper Virgin River basin.
    [Show full text]
  • Havasupai Nation Field Trip May 16 – 20, 2012 by Melissa Armstrong
    Havasupai Nation Field Trip May 16 – 20, 2012 By Melissa Armstrong The ESA SEEDS program had a field trip to Flagstaff, AZ the Havasupai Nation in Western Grand Canyon from May 16 – 20, 2012 as part of the Western Sustainable Communities project with funding from the David and Lucille Packard Foundation. The focus of the field trip was on water sustainability of the Colorado River Basin from a cultural and ecological perspective. The idea for this field trip arose during the Western Regional Leadership Meeting held in Flagstaff in April 2011 as a way to ground our meeting discussions in one of the most iconic places of the Colorado Plateau – the Grand Canyon. SEEDS alumnus Hertha Woody helped ESA connect with the Havasupai Nation; she worked closely with the former Havasupai tribal council during her tenure with Grand Canyon Trust as a tribal liaison. Hertha was instrumental in the planning of this experience for students. In attendance for this field trip were 17 undergraduate and graduate students, 1 alumnus, 1 Chapter advisor, and 2 ESA staff members (21 people total), representing eight Chapter campuses (Dine College Tuba City and Shiprock campuses, ASU, NAU, UNM, SIPI, NMSU, Stanford) – See Appendix A. The students were from a diverse and vibrant background; 42% were Native American, 26% White, 26% Hispanic and 5% Asian. All four of our speakers were Native American. The overall experience was profound given the esteem and generosity of the people who shared their knowledge with our group, the scale of the issues that were raised, the incredibly beautiful setting of Havasu Canyon, and the significant effort that it took to hike to Supai Village and the campgrounds – approximately 30 miles in three days at an elevation change of 1,500 feet each way.
    [Show full text]
  • Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010
    Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010 Prepared by: USDA Natural Resources Conservation Service University of Arizona, Water Resources Research Center In cooperation with: Coconino Natural Resource Conservation District Arizona Department of Agriculture Arizona Department of Environmental Quality Arizona Department of Water Resources Arizona Game & Fish Department Arizona State Land Department USDA Forest Service USDA Bureau of Land Management Released by: Sharon Megdal David L. McKay Director State Conservationist University of Arizona United States Department of Agriculture Water Resources Research Center Natural Resources Conservation Service Principle Investigators: Dino DeSimone – NRCS, Phoenix Keith Larson – NRCS, Phoenix Kristine Uhlman – Water Resources Research Center Terry Sprouse – Water Resources Research Center Phil Guertin – School of Natural Resources The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disa bility, po litica l be lie fs, sexua l or ien ta tion, an d mar ita l or fam ily s ta tus. (No t a ll prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal employment opportunity provider and employer. Havasu Canyon Watershed serve as a platform for conservation 15010004 program delivery, provide useful 8-Digit Hydrologic Unit information for development of NRCS Rapid Watershed Assessment and Conservation District business plans, and lay a foundation for future cooperative watershed planning.
    [Show full text]
  • Colorado River Managment Plan Annual Report Fiscal Year 2012
    U.S. Department of Interior GRAND CANYON NATIONAL PARK National Park Service COLORADO RIVER MANAGEMENT PLAN ANNUAL REPORT FOR FISCAL YEAR 2012 Project Number 140653 Contributions by: Vanya Pryputniewicz, Outdoor Recreation Planner Jennifer Dierker, Archeologist Linda Jalbert, Wilderness Coordinator Lisa Kearsley, Biological Technician Brett G Dickson, Principal Investigator, NAU Valerie Horncastle, Senior Research Specialist, NAU Luke Zachman, Senior Research Specialist, NAU For More Information contact: Vanya Pryputniewicz 928-638-7659 [email protected] Colorado River Management Plan Annual Report for FY2012 Page 2 Table of Contents Executive Summary ...................................................................................................................................... 4 Introduction ................................................................................................................................................... 6 Purpose and Need ......................................................................................................................................... 6 Mitigation Program ....................................................................................................................................... 7 Objectives ................................................................................................................................................. 8 Results and Observations .........................................................................................................................
    [Show full text]
  • Executive Summary U.S
    Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement 1 CONTENTS 2 3 4 ACRONYMS AND ABBREVIATIONS .................................................................................. vii 5 6 ES.1 Introduction ............................................................................................................ 1 7 ES.2 Proposed Federal Action ........................................................................................ 2 8 ES.2.1 Purpose of and Need for Action .............................................................. 2 9 ES.2.2 Objectives and Resource Goals of the LTEMP ....................................... 3 10 ES.3 Scope of the DEIS .................................................................................................. 6 11 ES.3.1 Affected Region and Resources .............................................................. 6 12 ES.3.2 Impact Topics Selected for Detailed Analysis ........................................ 6 13 ES.4
    [Show full text]
  • Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And
    1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail.
    [Show full text]
  • The Colorado River a NATURAL MENACE BECOMES a NATIONAL RESOURCE ' '
    The Colorado River A NATURAL MENACE BECOMES A NATIONAL RESOURCE ' ' I Comprehensive Report on the Development of ze Water Resources of the Colorado River Basin for rrigation, Power Production, and Other Beneficial Ises in Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming By THE UNITED STATES DEPARTMENT OF THE INTERIOR J . A . Krug, Secretary SPONSORED BY AND PREPARED UNDER THE GENERAL SUPERVISION OF THE BUREAU OF RECLAMATION Michael W. Straus, Commissioner E. A. Morit-, Director, Region 3 ; E. O. Larson, Director, Region 4 MARCH 1 946 1P 'A m 4„ M 1i'leming Library Grand Canyon Colleg P . )x 11097 Contents Page PROPOSED REPORT OF THE SECRETARY OF THE Explorations 46 INTERIOR Settlement 48 Page Population 49 Letter of June 6,1946, from the Acting Commissioner, Chapter III . DIVIDING THE WATER 53 3 Bureau of Reclamation Virgin Conditions 55 REGIONAL DIRECTORS' REPORT Early Development of the River 56 Summary of Conditions in the Early 1920's . 59 Map of Colorado River Basin Facing 9 Between the Upper and Lower Basins 59 Scope and Purpose 9 Between United States and Mexico . 66 Authority for the Report 9 DEVELOPING THE BASIN Cooperation and Acknowledgments 9 Chapter IV. 69 Description of Area 10 Upper Basin 72 Problems of the Basin 11 Labor Force 72 Water Supply 12 Land Ownership and Use 73 Division of Water 13 Soils 73 Future Development of Water Resources 13 Agriculture 73 Table I, Present and Potential Stream Depletions in Minerals and Mining 80 the Colorado River Basin 14 Lumbering 85 Potential Projects 14 Manufacturing 86 Table II, Potential Projects in the Colorado River Transportation and Markets .
    [Show full text]