Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy Microscopy and Microanalysis (2021), 27, 943–995 doi:10.1017/S1431927621012125 Review Article Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy Jingyue (Jimmy) Liu Department of Physics, Arizona State University, Tempe, AZ 85287, USA Abstract Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/ TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic- resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications. Key words: atomic resolution, electron microscopy, imaging, materials science, nanostructure (Received 1 January 2021; revised 5 June 2021; accepted 8 June 2021) Introduction The invention of both the telescope and the microscope has unlocked countless mysteries of Nature and enabled numerous Human beings have long been, and will continue to be, fascinated by discoveries that have positively impacted our daily life. Nature and how it works. Curiosity and a thirst for understanding In this review, the goal is to account for the major advances in Nature have fueled scientific and technological breakthroughs one particular type of microscope that is now broadly used for which have been continuously improving our quality of life. We analyzing matter at the atomic scale: the scanning transmission develop our perception of Nature by sensing of which visualization electron microscope (STEM). Although STEM was used to plays a critical role. Since human eyes have a very limited angular image single metal atoms as early as 1970 (Crewe et al., 1970), it resolution (∼1 arcminute or approximately 0.0003 radians), our took a long time for the broader research communities to effec- naked eyes cannot directly visualize either tiny features/creatures, tively utilize this powerful characterization method. The practical such as individual living bacteria, or gigantic individual stars within realization of the correction of lens aberrations to routinely achieve constellations that are far away. The early practice of making sub-Ångstrom image resolution with picometer precision and high spectacles and magnifiers with the goal of “seeing” small features chemical sensitivity greatly enhanced the impact of STEM and more clearly led to the development of two important scientific associated techniques on many research frontiers. Such an accom- tools: The telescope for clearly observing things far away and the plishment has revolutionized how we understand matter at the microscope for examining small features/creatures that our naked atomic level and will have a tremendous impact on how we under- eyes could not do. Both the early telescope and microscope relied stand Nature. The significance of this accomplishment is evidenced on the unique properties of glass lenses that possess the power to by the recent award of the 2020 Kavli Prize in Nanoscience to manipulate light rays. The continuous improvement in telescopes Harald Rose, Maximilian Haider, Knut Urban, and Ondrej has vastly expanded our knowledge of the Universe, while the devel- L. Krivanek “for sub-Ångstrom resolution imaging and chemical opment of various types of microscopes has enabled us to directly analysis using electron beams” (Rose et al., 2020). observe bacteria, viruses, molecules, and even individual atoms. Since many excellent reviews have been published on the topic of aberration-correction (e.g., Rose, 2008, 2009; Hawkes, 2009a, Email: [email protected] 2009b, 2015; Septier, 2017; Hawkes & Krivanek, 2019) we will Cite this article: Liu J (2021) Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. Microsc Microanal 27, 943–995. focus, in this review, on the advances of forming high-resolution doi:10.1017/S1431927621012125 images by scanning a finely focused electron probe and how to © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.219, on 28 Sep 2021 at 20:16:07, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1431927621012125 944 Jingyue (Jimmy) Liu correctly interpret such images. For the fundamental principles In 1957, Marvin Minsky filed a patent describing new approaches and applications of aberration-corrected STEM (ac-STEM), the to constructing a confocal scanning microscope (Minsky, 1957, interested reader is strongly encouraged to read the excellent 1988). The subsequent incorporation of a laser beam into reviews/books on these topics (Rose, 2009; Pennycook & Nellist, Minsky’s design (Davidovits & Egger, 1969, 1971), and the use of 2011; Erni, 2014; Tanaka, 2014; Hawkes & Krivanek, 2019; fluorescent markers for three-dimensional (3D) detection of biolog- Nellist, 2019). ical systems (Cremer & Cremer, 1978), significantly improved the image resolution and made it possible to obtain optical sectioning of 3D objects (Wilson, 2011). By using innovative approaches to A Brief History of the Light Microscope and the Birth of the generating and detecting fluorescent signals, the recent development Electron Microscope of super-resolution microscopes, tremendously aided by the devel- The Dutch eyeglass makers Hans Martens/Zacharias Janssen are opment of faster computers, high-quality lasers, fluorophores, and frequently credited for inventing the compound microscope algorithms for image acquisition and processing, proved extremely (Orchard & Nation, 2014), while Hans Lippershey, another successful in imaging biological objects with an image resolution Dutch eyeglass maker, is considered to be the first person to patent of <20 nm (which can be improved to ∼1 nm), enabling a telescope by assembling a concave eyepiece aligned with a convex observations of dynamic movements of subcellular systems under objective lens (Van Helden, 1977). The early practical applications physiologically relevant environment (Moerner & Kador, 1989; of these lens-based telescopes and microscopes were clearly Betzig & Trautman, 1992; Betzig & Chichester, 1993;Hell& reflected in their respective nicknames as spyglasses and flea Wichmann, 1994; Betzig, 1995; Dickson et al., 1997;Klaretal., glasses. Galileo Galilei, in 1609, constructed his own telescope 2000; Hell, 2003; Betzig et al., 2006;Rustetal.,2006; Huang et al., and discovered that the moon was not a perfect sphere; and with 2009; Pujals et al., 2019). finely polished lenses, he subsequently conducted scientific obser- Abbe’s theory predicts that the use of much shorter wavelengths vations of celestial objects and discovered many distant systems should provide improved image resolution. The de Broglie’s that had not been previously known (Drake, 2003). Even though hypothesis of matter waves (de Broglie, 1923, 1924), the subsequent the modern James Webb Space Telescope (expected to be launched experiments by Davisson and Germer to unambiguously verify the in late 2021) may cost more than $10 billion, our understanding wave nature of electrons (Davisson & Germer, 1927), and Busch’s of the Universe started by stacking two glass lenses to form a theoretical prediction that a cylindrical magnetic lens could be used rudimentary telescope. to focus electrons (Busch, 1926), analogous to the way light is Although the early development and applications of the scien- refracted by a glass lens, led to the emergence of new microscopes tific microscope are difficult to trace exactly, Robert Hooke’s publi- based on electrons instead of light. Ruska and Knoll audaciously cation of Micrographia in 1665 (Hooke, 1665) clearly demonstrated took the adventure of constructing a new type of microscope by the power of using compound microscopes to observe tiny features using high-energy electrons emitted from a metal tip, which pos- that naked human eyes had not been able to do. Hooke also coined sess a wavelength much shorter than that
Recommended publications
  • Sumario Revista De La RSEF
    “Antes pensábamos que el futuro estaba en las estrellas. Ahora sabemos que está en nuestro genes”. James Watson Actividades de la Real Sociedad Española de Física Boletín RSEF Número 36 XXV Olimpiada Española de Física Febrero 2014 lLa Fase Nacional de la XXV OEF se celebrará en A Coruña del 4 al 7 de abril de 2014. Estará organizada por la Universidade da Coruña (UDC), con la colaboración de la Xunta de Galicia y del Ayuntamiento de A Coruña. Ya está disponible en la página Web la I y II Circular informativa de la XXV OEF (http://www.rsef.es/oef/index.php/informacion). Sumario Revista de la RSEF -Actividades de la Real Sociedad Española de Física -Notas de prensa -Noticias -Misceláneas -Premios y Distinciones -Convocatorias -Congresos -Libro del mes El número 4, último del volumen 27 de 2013 acaba de ser distribuido, con un poquito de retraso como consecuencia de que el nuevo equipo responsable ha comenzado a adaptarse a los cambios que han de hacerse en el continente y en el contenido. Estos cambios son comentados en el editorial “Presentación y llamamiento” de este número, cuya lectura se recomienda lean para que todos nos veamos motivados a participar en la empresa. El contenido de este número es accesible para los suscriptores en el sitio web www.revistadefisica.es/index.php/ref/issue/view/128/showToc. Los no suscriptores podrán próximamente acceder a una parte, aunque no a todo el contenido de los siguientes números en el sitio www.revistadefisica.es/ y a través de este boletín. Se espera que el número 1 del volumen 28 de 2014 esté listo y distribuido a finales de marzo.
    [Show full text]
  • By Knut Urban Stuttgart and Director of the Max Planck Stuttgart, Germany
    I grew up in the early post-war period in by Knut Urban Stuttgart and Director of the Max Planck Stuttgart, Germany. This city is known for Institute for Metals Research, became its automobile industry and for its large interested in my results on the optical number of small and medium-sized apprenticeship in the field of electrical properties of plastically deformed industrial companies. engineering, which in the sixties, was the germanium at low temperatures and prerequisite for studying physics at the offered me a doctoral thesis. Seeger was My father was an electrical engineer and university. This was an important time for internationally recognized for his he ran a factory for small electric motors. me, because learning the skills of practical pioneering work in the field of crystal Over the decades, he set the main accents electrical engineering, including design defects, and he was one of the most of the company with a whole series of his and working in production with ordinary versatile solid state physicists of his time. own inventions. In my parental home workers not only helped me to acquire Accordingly, the fields dealt with in his there was a lot of thinking, reading and important professional knowledge, but institute and the experimental and discussing about science and technology. also strengthened my social skills. theoretical methods used were many and In addition to parental care, I owe to my Subsequently I enrolled at the Technical varied. father and my mother a critical, open, but University of Stuttgart to study physics. cooperative way of thinking. This was later Inspired by my work in the field of Seeger presented his doctoral students very beneficial to me, not least semiconductors at Bosch company with challenging topics and trusted that professionally.
    [Show full text]
  • Pakt Für Forschung Und Innovation Bericht Der Helmholtz-Gemeinschaft 2021
    PAKT FÜR FORSCHUNG UND INNOVATION BERICHT DER HELMHOLTZ-GEMEINSCHAFT 2021 a Titel: Das Forschungsteam des Helmholtz-Zentrums für Infektionsforschung (HZI) um Prof. Andrea Kröger hat Vero6-Zellen (Nierenepithelzellen) mit SARS-CoV-2 infiziert, die Dr. Mathias Müsken für diese elektronenmikroskopische Aufnahme genutzt hat. Sie zeigt die Viren (gelb) auf der Zelloberflä- che bei 16.000-facher Vergrößerung. Bild: HZI/Mathias Müsken Pakt-Monitoring-Bericht 2021 INHALT 1 VORWORT ................................................................................................................1 2 ÜBERBLICK DER FORSCHUNGSBEREICHE DER HELMHOLTZ-GEMEINSCHAFT .......2 3 SACHSTAND ������������������������������������������������������������������������������������������������������������8 3.1 DYNAMISCHE ENTWICKLUNG DES WISSENSCHAFTSSYSTEMS ����������������8 3.11 DIE DEUTSCHE WISSENSCHAFT IM INTERNATIONALEN WETTBEWERB .................12 3.12 ORGANISATIONSSPEZIFISCHE UND ORGANISATIONSÜBERGREIFENDE STRATEGIEPROZESSE .............................................................................................22 3.121 ORGANISATIONSPEZIFISCHE STRATEGIEPROZESSE................................................... 22 3.122 ORGANISATIONSÜBERGREIFENDE STRATEGIEPROZESSE .......................................... 29 3.13 IDENTIFIZIERUNG UND STRUKTURELLE ERSCHLIESSUNG NEUER FORSCHUNGSGEBIETE UND INNOVATIONSFELDER ..............................................33 3.14 WETTBEWERB UM RESSOURCEN ..........................................................................40
    [Show full text]
  • By Maximilian Haider
    by Maximilian Haider task I had to carry out was the development of a novel twelve-pole element for an aberration corrector with exams to be admitted to university and which the required strong quadrupole finally, at the age of 26, started studying and octopole fields could be generated. physics at the University of Kiel and the At the Institute of Applied Physics of TU Technical University of Darmstadt, Darmstadt two groups led by Otto Germany. For my diploma thesis I got in Scherzer and Harald Rose were carrying touch with the group of Harald Rose that out a long time project on the correction worked in the field of theoretical particle of the spherical (Cs) and chromatic (Cc) optics. I was attracted by the ongoing aberration of a conventional Transmission aberration correction project due to Electron Microscope (TEM) by means of a familiar aberrations in electron optics I quadrupole-octopole correction system. At primary school in 1960, age 10 knew from my time as an optician. The The development of such a corrector was In 1950, I was born in a small historic town in Austria, where my parents Maximilian Haider and Anna Haider owned a watchmaker shop. My father had taken over his father´s shop, and my eldest brother stepped into their footsteps and became a watchmaker, too. To expand the business, it was agreed early in my childhood that I should become an optician. Therefore, I started working as an optician´s apprentice in Linz, Austria, when I was 14 years old. After the first optician certification exam I realized that the prospect of working as an optician for my whole life did not satisfy me.
    [Show full text]
  • Corrected Electron Microscopy Maximili
    The 2011 Wolf Prize for Physics has been awarded jointly to three pioneers in Aberration‐ Corrected Electron Microscopy Maximilian Haider Prof. Harald Rose CEOS GmbH and Carl Zeiss Senior Professor Karlsruhe Institute of Technology Ulm University Karlsruhe, Germany Ulm, Germany Knut Urban Research Centre Jülich Jülich, Germany, RWTH Aachen, Aachen, Germany for their development of aberration‐corrected electron microscopy, allowing the observation of individual atoms with picometer precision, thus revolutionizing materials science. This is the full quotation for the attribution of the prize : “The electron microscope is one of the most widely used research tools in modern science, playing a pivotal role in virtually all areas of natural sciences, as well as in a broad range of technologies, from basic research to vital industries. Since its invention in 1931, the performance of electron microscopy has been limited by the effects of the aberrations of the electron lenses used, which kept its spatial resolving power at values far below the theoretical limit. Given its broad role in advancing modern science and technology, extraordinary efforts were made, worldwide, to overcome these limitations. But, for over half a century, these attempts failed. Working together since 1990, the three Wolf Prize Laureates jointly succeeded in realizing aberration‐corrected electron optics for the first time. As a result, they have advanced the resolution of transmission electron microscopy to atomic and sub‐atomic dimensions. Their work was inspired by a novel optical concept for the correction of spherical aberration of the objective lens of an electron microscope, developed by Harald Rose (born 1935, Germany). Based on this corrector principle, Maximilian Haider (born 1950, Austria) constructed the first prototypical aberration‐corrected transmission electron microscope.
    [Show full text]
  • Microscopy & Microanalysis Table of Contents
    Microscopy & Microanalysis The Official M&M 2017 Proceedings St. Louis, MO, USA • August 6-10, 2017 Table of Contents Title Page i Copyright Page ii MAM Editors iii Copyright Information iv Contents v Welcome from the Society Presidents lxxvii Welcome from the Program Chairs lxxviii Plenary Sessions lxxix Microscopy Society of America lxxxii Microanalysis Society of America lxxxviii International Field Emission Society xcii Meeting Awards xciii Abstracts 2 Author Index 2324 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 28 Sep 2021 at 18:43:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/termsv . https://doi.org/10.1017/S1431927617012284 2017 Plenary Session 2 Imaging Cellular Structure and Dynamics from Molecules to Organisms; E Betzig 4 Detecting Massive Black Holes via Attometry: Gravitational Wave Astronomy Begins; K Riles Analytical and Instrumentation Science Symposia Vendor Symposium 6 Probing the Element Distribution at the Organic-Inorganic Interface Using EDS; M Falke, A Kaeppel, B Yu, T Salge, R Terborg 8 ZEISS Crossbeam – Advancing Capabilities in High Throughput 3D Analysis and Sample Preparation; T Volkenandt, F Pérez-Willard, M Rauscher, PM Anger 10 A Dedicated Backscattered Electron Detector for High Speed Imaging and Defect Inspection; M Schmid, A Liebel, R Lackner, D Steigenhöfer, A Niculae, H Soltau 12 Large Area 3D Structural Characterization by Serial Sectioning Using Broad Ion Beam Argon Ion Milling; P NOWAKOWSKI, ML Ray, PE Fischione 14 New
    [Show full text]
  • Descarga El Catálogo
    Premios Fundación Fronteras del Conocimiento · Foundation Frontiers of Knowledge Awards X edición · 10th edition Francisco González Presidente President Fundación BBVA BBVA Foundation Hace ya una década que arrancaron los Premios It is ten years now since the BBVA Foundation Fundación BBVA Fronteras del Conocimiento para Frontiers of Knowledge Awards emerged on the scene hacer explícito el agradecimiento que la sociedad de with the mission to activate society’s latent regard forma tácita dirige a las aportaciones que la ciencia for the contributions made by science and culture to y la cultura hacen al bienestar individual y colectivo. our individual and collective wellbeing. This family Esta familia de premios nació de la convicción de que of awards was born from the conviction that knowl- el conocimiento amplía nuestras oportunidades no edge expands our opportunities not only through solo a través de la tecnología y sus aplicaciones, sino technology and its applications but also by virtue of por su valor cognitivo, contribuyendo a modelar la its cognitive value, which helps shape the way that manera en que como individuos y desde la cultura co- we approach the world around us, both as individuals lectiva nos acercamos al mundo que nos rodea, pero and through our place in the collective culture, while dotándonos además de la sensibilidad para apreciarlo giving us the sensibility to appreciate and interact e interactuar con él. with it more fully. Los Premios Fronteras se incorporaron a la actividad The Frontiers Awards became part of the work pro- de la Fundación BBVA complementando una larga gram of the BBVA Foundation, supplementing its long trayectoria de apoyo directo a la investigación y record of direct support to research, and sundry other de diversas familias de galardones.
    [Show full text]
  • PGI Interim Report 2009 – 2012
    PGI Interim Report 2009 – 2012 Peter Grünberg Institute Member of the Helmholtz Association Member of the Imprint Peter Grünberg Institute (PGI) Interim Report 2009 – 2012 Published by: Forschungszentrum Jülich GmbH 52425 Jülich, Germany Editors: Prof. Dr. Claus M. Schneider, Managing Director PGI Dr. Wolfgang Speier, JARA-FIT Prof. Dr. Rainer Waser, Programme Spokesman FIT Technical Editing: Dr. L. Baumgarten S. Schilling Dr. W. Speier A. Wenzik Printed by: Forschungszentrum Jülich, Grafische Medien September 2012 Peter Grünberg Institute (PGI) Research for the Fundamentals of Future Information Technology Interim Report 2009-2012 Contents I. Peter Grünberg Institute: Research for the Fundamentals of Future Information Technology.................................................................................... 1 II. The Helmholtz Research Programme FIT ............................................................................ 3 III. The Jülich-Aachen Research Alliance JARA-FIT............................................................... 9 IV. Divisions ......................................................................................................11 PGI-1/IAS-1: Quantum Theory of Materials..................................................................... 13 Scientific Staff......................................................................................14 Research Highlights ............................................................................15 Selected Publications ..........................................................................31
    [Show full text]
  • Nobel Prize Winners À La Carte Stages of This Project
    Koji Kimoto Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division, Special interview NIMS History of the advancement of the electron microscope as viewed from Japan Today, the resolution of electron microscopes has reached the sub-atomic level of The Next 50 pm*. How was this accomplished? The key terms are “high voltage” and “aberration correction.” Here, the two scientists in a teacher-student relationship—Nobuo Tanaka, Presi- Nobuo Tanaka dent of The Japanese Society of Microscopy, and Koji Kimoto, a NIMS unit director, Ambition of President of The Japanese Society of Microscopy, who has been working on materials research using a cutting-edge electron micro- Professor Emeritus of Nagoya University scope—will discuss the history of the development of the electron microscope. Microscopists * 1 pm (picometer) is one-trillionth of 1 m. Humankind’s ambition to see more However, there was a problem in realizing an II broke out, the subcommittee no longer had corrected, resolution can be improved by minute details electron microscope; the image of a specimen access to information from Germany. However, shortening the wavelengths of the electrons. With long lineage and formed by electrons couldn’t be magnified the subcommittee continued its own develop- To achieve this, an ultra-high voltage elec- Kimoto: I would like to begin our talk on the using glass lenses. Amid this situation, the Ger- ment activities, and succeeded in the manu- tron microscope was developed in which the subject of the invention of the electron micro- man physicist Hans Busch suggested in 1926 facture of Japan’s first commercial product in wavelengths of electrons were shortened by continued challenges scope.
    [Show full text]
  • Isaac Held, Premio Fundación BBVA Fronteras Del Conocimiento Por Sus Descubrimientos Sobre La Circulación Atmosférica Y El Pa
    Tercer fallo de la sexta edición de los galardones Haider, Rose y Urban, premio Fronteras del Conocimiento por inventar el microscopio de precisión subatómica, que abre nuevas vías de desarrollo a las nanociencias Cuando otros daban por imposible el objetivo de lograr la precisión subatómica, ellos formaron un equipo, lograron financiación y en una década resolvieron el problema y diseñaron un prototipo La imagen ofrecida por la microscopía electrónica de transmisión con corrección de aberración permite observar nítidamente el comportamiento de los átomos y relacionarlo con propiedades de la materia Existen varios cientos de estos microscopios en el mundo que se utilizan en investigación de materiales, nanoelectrónica y biología molecular Madrid, 21 de enero de 2014.- El Premio Fundación BBVA Fronteras del Conocimiento en la categoría de Ciencias Básicas ha sido concedido en su sexta edición a los físicos alemanes Maximilian Haider, Harald Rose y Knut Urban por “aumentar de forma exponencial el poder de resolución del microscopio electrónico al desarrollar una óptica electrónica que ha supuesto un avance que ofrece precisión subatómica”. Los tres investigadores se enfrentaron a un problema que obstaculizaba el desarrollo de la nanotecnología y que era considerado en gran medida irresoluble: la baja resolución de la microscopía electrónica. De hecho, mientras agencias estatales decidían dejar de financiar esta línea de investigación, los ganadores formaron un equipo con el objetivo de encontrar una solución. En menos de una década no solo tenían una respuesta teórica, sino también un prototipo de microscopio. Su técnica es la única que permite explorar la materia en la escala del picómetro, el equivalente a una centésima del diámetro de un átomo de hidrógeno –la billonésima parte de un metro–.
    [Show full text]
  • By Knut Urban Stuttgart and Director of the Max Planck Stuttgart, Germany
    I grew up in the early post-war period in by Knut Urban Stuttgart and Director of the Max Planck Stuttgart, Germany. This city is known for Institute for Metals Research, became its automobile industry and for its large interested in my results on the optical number of small and medium-sized apprenticeship in the field of electrical properties of plastically deformed industrial companies. engineering, which in the sixties, was the germanium at low temperatures and prerequisite for studying physics at the offered me a doctoral thesis. Seeger was My father was an electrical engineer and university. This was an important time for internationally recognized for his he ran a factory for small electric motors. me, because learning the skills of practical pioneering work in the field of crystal Over the decades, he set the main accents electrical engineering, including design defects, and he was one of the most of the company with a whole series of his and working in production with ordinary versatile solid state physicists of his time. own inventions. In my parental home workers not only helped me to acquire Accordingly, the fields dealt with in his there was a lot of thinking, reading and important professional knowledge, but institute and the experimental and discussing about science and technology. also strengthened my social skills. theoretical methods used were many and In addition to parental care, I owe to my Subsequently I enrolled at the Technical varied. father and my mother a critical, open, but University of Stuttgart to study physics. cooperative way of thinking. This was later Inspired by my work in the field of Seeger presented his doctoral students very beneficial to me, not least semiconductors at Bosch company with challenging topics and trusted that professionally.
    [Show full text]
  • Jung, Innovativ, Erfahren!
    JUNG, INNOVATIV, ERFAHREN! Jahresbericht 2013/2014 des Karlsruher Instituts für Technologie KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu 2 AUF EINEN BLICK Karlsruher Institut für Technologie (KIT) Körperschaft des öffentlichen Rechts Das KIT ist eine Universität des Landes Baden-Württemberg und ein nationales Forschungszentrum in der Helmholtz-Gemeinschaft. Gründung 1. Oktober 2009 Als Zusammenschluss der Universität Karlsruhe (gegründet 1825) und des Forschungszentrums Karlsruhe (gegründet 1956) Beschäftigte 2014 Gesamt: 9 491 Lehre und Forschung: 5 680 Infrastruktur und Dienstleistung: 3 456 Professorinnen und Professoren: 355 Ausländische Wissenschaftlerinnen und Wissenschaftler: 1 002 Auszubildende: 474 Studierende Wintersemester 2014/2015: 24 778 Budget 2014 (vorläufige Zahlen: Stand 16. Juni 2015) Gesamt: 847,4 Mio. Euro Bundesmittel: 256,9 Mio. Euro Landesmittel: 221,3 Mio. Euro Drittmittel: 369,2 Mio. Euro EDITORIAL 3 Am 1. Oktober 2014 wurde das Karlsruher Institut für Technologie (KIT) fünf Jahre jung. Als einzigartiges „Experiment“ in der deutschen Wissen- schaftslandschaft ist das KIT durch die vollständige rechtliche Fusion einer nationalen Großforschungseinrichtung in der Helmholtz-Gemeinschaft mit einer etwa gleich großen Universität des Landes Baden-Württemberg gestartet. In den ersten fünf Jahren hat sich das KIT mit Unterstützung der Politik, der Kooperationspartner in Wirtschaft und Wissenschaft sowie durch den großen Einsatz seiner Mitarbeiterinnen
    [Show full text]