PGI Interim Report 2009 – 2012

Total Page:16

File Type:pdf, Size:1020Kb

PGI Interim Report 2009 – 2012 PGI Interim Report 2009 – 2012 Peter Grünberg Institute Member of the Helmholtz Association Member of the Imprint Peter Grünberg Institute (PGI) Interim Report 2009 – 2012 Published by: Forschungszentrum Jülich GmbH 52425 Jülich, Germany Editors: Prof. Dr. Claus M. Schneider, Managing Director PGI Dr. Wolfgang Speier, JARA-FIT Prof. Dr. Rainer Waser, Programme Spokesman FIT Technical Editing: Dr. L. Baumgarten S. Schilling Dr. W. Speier A. Wenzik Printed by: Forschungszentrum Jülich, Grafische Medien September 2012 Peter Grünberg Institute (PGI) Research for the Fundamentals of Future Information Technology Interim Report 2009-2012 Contents I. Peter Grünberg Institute: Research for the Fundamentals of Future Information Technology.................................................................................... 1 II. The Helmholtz Research Programme FIT ............................................................................ 3 III. The Jülich-Aachen Research Alliance JARA-FIT............................................................... 9 IV. Divisions ......................................................................................................11 PGI-1/IAS-1: Quantum Theory of Materials..................................................................... 13 Scientific Staff......................................................................................14 Research Highlights ............................................................................15 Selected Publications ..........................................................................31 Indicators .............................................................................................32 PGI-2/IAS-3: Theoretical Nanoelectronics ...................................................................... 35 Scientific Staff......................................................................................36 Research Highlights ............................................................................37 Selected Publications ..........................................................................47 Indicators .............................................................................................48 PGI-3: Functional Nanostructures at Surfaces .............................................................. 49 Scientific Staff......................................................................................50 Research Highlights ............................................................................51 Selected Publications ..........................................................................65 Indicators .............................................................................................66 PGI-4/JCNS-2: Scattering Methods................................................................................... 67 Scientific Staff......................................................................................68 Research Highlights ............................................................................69 Selected Publications ..........................................................................83 Indicators .............................................................................................84 PGI-5: Microstructure Research ....................................................................................... 85 Scientific Staff......................................................................................86 Research Highlights ............................................................................87 Selected Publications ........................................................................101 Indicators ...........................................................................................102 PGI-6: Electronic Properties........................................................................................... 103 Scientific Staff....................................................................................104 Research Highlights ..........................................................................105 Selected Publications ........................................................................119 Indicators ...........................................................................................120 PGI-7: Electronic Materials.............................................................................................. 121 Scientific Staff....................................................................................122 Research Highlights ..........................................................................123 Selected Publications ........................................................................137 Indicators ...........................................................................................138 PGI-8/ICS-8: Bioelectronics ............................................................................................. 139 Scientific Staff ....................................................................................140 Research Highlights...........................................................................141 Selected Publications ........................................................................159 Indicators ...........................................................................................160 PGI-9: Semiconductor Nanoelectronics........................................................................ 161 Scientific Staff ....................................................................................162 Research Highlights...........................................................................163 Selected Publications ........................................................................177 Indicators ...........................................................................................178 V. Major Facilities and Scientific-Technical Infrastructure .............................................. 179 Helmholtz Nanoelectronic Facility (HNF) ....................................................................... 181 Ernst Ruska-Centre (ER-C).............................................................................................. 183 Research Highlights...........................................................................185 Selected Literature.............................................................................189 Jülich Centre for Neutron Science (JCNS) .................................................................... 191 List of instruments..............................................................................192 Research Highlights...........................................................................193 Selected Literature.............................................................................197 Jülich Synchrotron Radiation Laboratory (JSRL)......................................................... 199 Research Highlights...........................................................................201 Selected Literature.............................................................................205 Scientific Infrastructure of the PGI ................................................................................. 207 Introduction PGI Introduction I. Peter Grünberg Institute: Research for the Fundamentals of Future Information Technology The Peter Grünberg Institute (PGI) was established in 2011 as a merger of the Institute of Solid State Research (IFF) and the Institute for Bio- and Nanosystems (IBN) which have been dealing with electronic phenomena, materials, and devices. Named after Peter Grünberg, the first Nobel laureate in the Forschungszentrum Jülich, the institute dedicates itself to fundamental research in the field of information technology and related areas. The main focus is on the exploration of novel physical concepts and new materials with a future emphasis on energy efficiency – „Green IT“. The research activities bridge from contemporary semiconductor nanoelectronics via spintronics to bioelectronics and quantum information processing. The PGI also not only features a broad basis of state-of-the-art condensed matter theory, but also an experimental platform for the development of highly specialized instruments, procedures and innovative material systems for nanoelectronics. This unique combination permits the PGI to develop new ideas also in application-oriented directions. The scientific challenges are pursued along three main axes: (i) exploring novel electronic phenomena in condensed matter physics, (ii) investigating specific aspects of material science in complex electronic systems and devices, (iii) development of new theoretical and experimental concepts, methods and strategies. Quantum mechanics forms the fundamental framework of the main research activities in the PGI. On a microscopic scale it determines the interactions of electrons and atomic building blocks, and their response to external stimuli on a broad range of time and length scales. Particular strengths of the PGI lie in the theory of electronic structures and processes, phenomena and materials for nano-, molecular, bio- and spinelectronics, and electron microscopy and spectroscopy. This is paired with a long-standing expertise in the development of instruments at synchrotron radiation and neutron sources for detailed investigations of complex material systems. Major topics of the PGI research are the electronic properties of solid state structures ranging from crystals down
Recommended publications
  • Effective Interaction Between Membrane and Scaffold
    Effective Interaction Between Membrane And Scaffold Masterarbeit aus der Physik Vorgelegt von Matthias Sp¨ath 04.02.2016 PULS Group Friedrich-Alexander-Universit¨atErlangen-N¨urnberg Betreuung: Prof. Dr. Ana-Sunˇcana Smith Summary Life threatening and life forming events, like the spreading of cancer and embryogen- esis, are governed by how cells interact with each other and therefore by cell adhesion. Further, all cells are surrounded by membranes. Therefore, the understanding of membrane interactions is the foundation for evaluating the role of biological mem- branes in the process of cell adhesion. While the role of various adhesive proteins in this process is mostly dealt with by biology, physics can be used to analyze and describe the mechanistic details of the membrane. This makes membranes and their interactions a highly relevant and exciting field in biophysics. From a physical point of view the interaction between two opposing membranes or membrane and substrate is governed by the interaction potentials and the bend- ing energy of the membrane. Even though the individual contributions, such as the Helfrich and steric repulsion, the van der Waals attraction, and the hydration forces are reasonably well understood, there is a discrepancy between the experimentally determined effective potential and its theoretical prediction. We address this dis- crepancy from several angles. We perform an in-depth analysis of the van der Waals interaction for membranes to make sure that there are no unexpected contributions for that potential. Additionally we construct real space Monte Carlo simulations for fluctuating membranes and their interactions. These are the two main chapters of this thesis.
    [Show full text]
  • Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
    Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD.
    [Show full text]
  • Mechanisms in Surface Enhanced Raman Scattering
    Mechanisms in Surface Enhanced Raman Scattering by Matthias Meyer A thesis submitted to the Victoria University of Wellington in fullfilment of the requirements for the degree of Doctor of Philosophy in Physics Victoria University of Wellington The MacDiarmid Institute for Advanced Materials and Nanotechnology 2009 Abstract This thesis focusses on a number of topics in surface enhanced Raman scattering (SERS). The aim of the undertaken research was to deepen the general understanding of the SERS effect and, thereby, to clarify some of the disputed issues, among them: What is the origin of the enhancement? What is the physical or chemical effect of ‘salt activation’ in SERS systems? Can we observe single-molecules using SERS? Can we determine the ab- sorbate’s orientation on the surface? In part one (chapters 1-3), as a general introduction, I start with a short overview of the Raman effect and its relation to other molecular spectro- scopic effects (such as fluorescence, Rayleigh scattering, etc... ). Follow- ing these basic remarks, the surface enhancement mechanisms underlying SERS are explained (as a largely electromagnetic field enhancement) and are investigated theoretically on the canonical model of a nanoscopic dimer of silver spheres. The second part (chapter 4) reports on the experimental investigation (elec- tron microscopy, in-situ Raman measurements) of a typical real SERS sys- tem: Lee & Meisel silver colloids. An emphasis is put on the self-limiting aggregation kinetics which is observed in such systems after salt addi- tion. This is also investigated and rationalised by means of Monte-Carlo simulations which are footed on empiric theoretical considerations for the interaction potential.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • The Very Forward CASTOR Calorimeter of the CMS Experiment
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration .
    [Show full text]
  • Electrical Double Layer Interactions with Surface Charge Heterogeneities
    Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments.
    [Show full text]
  • Chapter 5 Co-Culture of Young Porcine Islets with Liver Microvascular Endothelial Cells in Fibrin Improves Insulin Secretion and Reduces Apoptosis
    UNIVERSITE DE SHERBROOKE Faculte de genie Departement de genie chimique et de genie biotechnologique DEVELOPPEMENT ET VALIDATION DE SURFACES ET D’ECHAFAUDAGES PROPICES AU DEVELOPPEMENT ET AU MAINTIEN DES FONCTIONS DE CELLULES PANCREATIQUES BETA TOWARDS THE DEVELOPMENT AND VALIDATION OF BIOMATERIAL SURFACES AND SCAFFOLDS SUITABLE FOR PANCREATIC BETA­ CELL DEVELOPMENT AND FUNCTION These de doctorat Specialite: genie chimique Evan Aiozie DUBIEL Jury : Patrick VERMETTE (directeur) Jonathan LAKEY Steven PARASKEVAS Marie-Josee BOUCHER Marcel LACROIX (rapporteur) Sherbrooke (Quebec) Canada Novembre 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-93268-1 Our file Notre reference ISBN: 978-0-494-93268-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these.
    [Show full text]
  • A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars
    minerals Review A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars Joanna Clark 1,* , Brad Sutter 2, P. Douglas Archer Jr. 2, Douglas Ming 3, Elizabeth Rampe 3, Amy McAdam 4, Rafael Navarro-González 5,† , Jennifer Eigenbrode 4 , Daniel Glavin 4 , Maria-Paz Zorzano 6,7 , Javier Martin-Torres 7,8, Richard Morris 3, Valerie Tu 2, S. J. Ralston 2 and Paul Mahaffy 4 1 GeoControls Systems Inc—Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA 2 Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (B.S.); [email protected] (P.D.A.J.); [email protected] (V.T.); [email protected] (S.J.R.) 3 NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (D.M.); [email protected] (E.R.); [email protected] (R.M.) 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.M.); [email protected] (J.E.); [email protected] (D.G.); [email protected] (P.M.) 5 Institito de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; [email protected] 6 Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, 28850 Madrid, Spain; [email protected] 7 Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK; [email protected] 8 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain Citation: Clark, J.; Sutter, B.; Archer, * Correspondence: [email protected] P.D., Jr.; Ming, D.; Rampe, E.; † Deceased 28 January 2021.
    [Show full text]
  • Determining Charge Distribution of Metal Oxide Surfaces with Afm Using Colloid Probe Technique
    DETERMINING CHARGE DISTRIBUTION OF METAL OXIDE SURFACES WITH AFM USING COLLOID PROBE TECHNIQUE A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Chemical Engineering by Ayşe GÜREL December 2012 İZMİR We approve the thesis of Ayşe GÜREL Examining Committee Members: _________________________ Prof. Dr. Mehmet POLAT Department of Chemical Engineering İzmir Institute of Technology _________________________ Prof. Dr. Metin TANOĞLU Department of Mechanical Engineering İzmir Institute of Technology _________________________ Assoc. Prof. Dr. Ekrem ÖZDEMİR Department of Chemical Engineering İzmir Institute of Technology 4 December 2012 ______________________ Prof. Dr. Mehmet POLAT Supervisor Department of Chemical Engineering İzmir Institute of Technology _______________________ ________________________ Prof. Dr. Mehmet POLAT Prof. Dr. R. Tuğrul SENGER Head of the Department of Dean of the Graduate School of Chemical Engineering Engineering and Sciences ACKNOWLEDGMENTS First and foremost, I would like to express my gratitude to my supervisor Prof. Dr. Mehmet POLAT for his supervision, academic guidance, encouragement and insight throughout my thesis study. Secondly, I acknowledge the Scientific and Technological Research Council of Turkey (TÜBİTAK), one of the distinguished institutions of my country, for granting me a graduate scholarship. I also owe many thanks to Gülnihal Yelken Özek for her valuable helping in the laboratory, experience, motivations, understanding during the study. I would like to thank to Prof. Dr. Hürriyet Polat for her helping in Particle Size distribution analysis. I am grateful to Assoc. Prof. Ekrem Özdemir at İzmir Institute of Technology in the Department of Chemical Engineering for his valuable help in Zeta Potential Measurement analysis.
    [Show full text]
  • Interplanetary Flight and Communication Volume I, No. 2
    . .- NASA , TT F-640 I V. 1#2 ,"A. Rynin C. 1 INTERPLANETARY FLIGHT iI TRANSLATED FROM RUSSIAN Published for the National Aeronautics and Space Administration and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L TECH LlBRARY KAFB, NM I18lllll 11111 llllllllll llllllll#11~ .. ... 0Db92L3 N.A. Rynin INTERPLANETARY FLIGHT AND COMMUNICATION (Mezhplanetnye soobshcheniya) Volume I, No. 2 SPACECRAFT IN SCIENCE FICTION (Kosmi c hes kie kor abli) Leningrad 1928 Translated from Russian Israel Program for Scientific Translations Jerusalem 1971 NASA TT F-641 TT 70-50112 Published Pursuant to an Agreement with THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright 0 1971 Israel Program for Scientific Translations Ltd. IPST Cat. No. 5813 Translated by R. Lavoott Printed in Jerusalem by Keter Press Available from the U. S. DEPARTMENT OF COMMERCE National Technical Information Service Springfield, Va. 22 15 1 HI/ 16 I Table of Contents Page Foreword ......................... 1 Preface ......................... 2 CHAPTER I. From a Gun to the Planets ............. 4 CHAPTER 11. Hurling Machines ................ 31 CHAPTER 111. Flights with the Aid of Minus and Plus Matter ...... 40 CHAPTERIV. Flights with the Aid of Radiation Pressure ....... 60 CHAPTER V. The Use of Radiant Energy ............. 80 CHAPTER VI. Electric Ships ................. 85 CHAPTER VII. Radio Ships .................. 95 CHAPTER VIII. The Use of Intra-Atomic Energy .......... 106 CHAPTER IX. Rocket Ships .................. 127 CHAPTER X. Inhabitants of Celestial Worlds ........... 153 Conclusion ........................ 180 ... 111 I FOREWORD The inquisitive human mind cannot be satisfied by established forms and laws of science, art, and life in general.
    [Show full text]
  • Enhanced Warfighters: Risk, Ethics, and Policy
    Enhanced Warfighters: Risk, Ethics, and Policy Maxwell J. Mehlman Case Research Paper Series in Legal Studies Working Paper 2013-2 Jan., 2013 This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=2202982 For a complete listing of this series: http://www.law.case.edu/ssrn Electronic copy available at: http://ssrn.com/abstract=2202982 CASE WESTERN RESERVE UNIVERSITY Enhanced Warfighters: Risk, Ethics, and Policy Prepared for: The Greenwall Foundation Prepared by: Patrick Lin, PhD Maxwell J. Mehlman, JD Keith Abney, ABD California Polytechnic State University, San Luis Obispo College of Liberal Arts Philosophy Department Ethics + Emerging Sciences Group Case Western Reserve University School of Law School of Medicine The Law-Medicine Center Prepared on: January 1, 2013 Version: 1.0.0 Electronic copy available at: http://ssrn.com/abstract=2202982 ▌i Index Executive summary iii Disclosures iv 1. Introduction 1 1.1. Purpose 2 1.2. Background 3 1.3. Questions 8 2. What is human enhancement? 11 2.1. Controversies 12 2.2. Working definition 17 2.3. Variables 18 2.4. Technology survey 21 3. Law and policy 28 3.1. International humanitarian law 28 3.2. US domestic law 36 3.3. Operations 38 4. Bioethics 43 4.1. Research model 44 4.2. Medical model 50 4.3. Public-health model 54 5. Risk Assessment 57 5.1. Risk-benefit model 57 5.2. Risk factors 61 6. A hybrid framework 66 6.1. Legitimate military purpose 66 6.2. Necessity 67 6.3. Benefits outweigh risks 67 Enhanced Warfighters: Risk, Ethics, and Policy Copyright 2013 © Patrick Lin, Maxwell J.
    [Show full text]
  • Mathematical Methods to Predict the Dynamic Shape Evolution of Cancer Growth Based on Spatio-Temporal Bayesian and Geometrical Models
    UNIVERSITY \JAUME I" OF CASTELLON´ Superior School of Technologies and Experimental Sciences DEPARTMENT OF MATHEMATICS MATHEMATICAL METHODS TO PREDICT THE DYNAMIC SHAPE EVOLUTION OF CANCER GROWTH BASED ON SPATIO-TEMPORAL BAYESIAN AND GEOMETRICAL MODELS Author: Advisors: Iulian Teodor Vlad Prof. Dr. Jorge Mateu Prof. Dr. Jos´eJoaquin Gual Arnau Castell´onde la Plana 2015 University \Jaume I" of Castell´on Superior School of Technologies and Experimental Sciences DEPARTMENT OF MATHEMATICS Doctoral Thesis Mathematical Methods to Predict the Dynamic Shape Evolution of Cancer Growth based on Spatio-Temporal Bayesian and Geometrical Models Author: Supervisors: Ing. Iulian Teodor Vlad Prof. Dr. Jorge Mateu Prof. Dr. Jos´eJoaquin Gual Arnau A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Computer Mathematics December 2015 Mathematical Methods to Predict the Dynamic Shape Evolution of Cancer Growth based on Spatio-Temporal Bayesian and Geometrical Models Copyright c 2015 - Ing. Iulian Teodor Vlad ALL RIGHT RESERVED Declaration of Authorship I, Ing. Iulian Teodor Vlad, declare that this thesis entitled, 'Mathematical Methods to Predict the Dynamic Shape Evolution of Cancer Growth based on Spatio-Temporal Bayesian and Geometrical Models' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed.
    [Show full text]