DISORIENTED CHIRAL CONDENSATE: THEORY AND EXPERIMENT a b, B. Mohanty and J. Serreau ∗ aVariable Energy Cyclotron Center, 1/AF, Bidhan Nagar Kolkata - 700064, India bAstro-Particule et Cosmologie, 11, place Marcelin Berthelot, F-75231 Paris Cedex 05, France and Laboratoire de Physique Th´eorique, Bˆatiment 210, Universit´eParis-Sud 11, 91405 Orsay Cedex, France 1 Abstract It is thought that a region of pseudo-vacuum, where the chiral order parameter is misaligned from its vacuum orientation in isospin space, might occasionally form in high energy hadronic or nuclear collisions. The possible detection of such disoriented chiral condensate (DCC) would provide useful information about the chiral structure of the QCD vacuum and/or the chiral phase transition of strong interactions at high temperature. We review the theoretical developments concerning the possible DCC formation in high-energy collisions as well as the various experimental searches that have been performed so far. We discuss future prospects for upcoming DCC searches, e.g. in high-energy heavy-ion collision experiments at RHIC and LHC. Key words: Disoriented chiral condensates, Heavy-ion collisions, Quantum chromodynamics, Particle production. arXiv:hep-ph/0504154v2 25 May 2005 PACS: 12.38.-t, 11.30.Rd, 12.38.Mh, 25.75.-q, 25.75.Dw 1 Introduction In very high energy hadronic and/or nuclear collisions highly excited states are produced and subsequently decay toward vacuum via incoherent multi- ∗ Corresponding Author. Tel: +33 1 69 15 70 36, Fax: +33 1 69 15 82 87 Email addresses:
[email protected] (B. Mohanty),
[email protected] (J.