October 1986
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Birth and Childhood of a Couple of Twin Brothers V
Proceedings of ICFA Mini-Workshop on Impedances and Beam Instabilities in Particle Accelerators, Benevento, Italy, 18-22 September 2017, CERN Yellow Reports: Conference Proceedings, Vol. 1/2018, CERN-2018-003-CP (CERN, Geneva, 2018) THE BIRTH AND CHILDHOOD OF A COUPLE OF TWIN BROTHERS V. G. Vaccaro, INFN Sezione di Napoli, Naples, Italy Abstract The context in which the concepts of Coupling Imped- Looking Far ance and Universal Stability Charts were born is de- scribed in this paper. The conclusion is that the simulta- Even before the successful achievements of PS and neous appearance of these two concepts was unavoidable. AGS, the scientific community was aware that another step forward was needed. Indeed, the impact of particles INTRODUCTION against fixed targets is very inefficient from the point of view of the energy actually available: for new experi- At beginning of 40’s, the interest around proton accel- ments, much more efficient could be the head on colli- erators seemed to quickly wear out: they were no longer sions between counter-rotating high-energy particles. able to respond to the demand of increasing energy and intensity for new investigations on particle physics. With increasing energy, the energy available in the Inertial Frame (IF) with fixed targets is incomparably Providentially important breakthrough innovations smaller than in the head-on collision (HC). If we want the were accomplished in accelerator science, which pro- same energy in IF using fixed targets, one should build duced leaps forward in the performances of particle ac- gigantic accelerators. In the fixed target case (FT), ac- celerators. cording to relativistic dynamics, an HC-equivalent beam should have the following energy. -
A Brief History and Review of Accelerators
A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots. -
Center for History of Physics Newsletter, Spring 2008
One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter. -
2007 Annual Report APS
American Physical Society APS 2007 Annual Report APS The AMERICAN PHYSICAL SOCIETY strives to: Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity; Collaborate with national scientific societies for the advancement of science, science education, and the science community; Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration; Have an active, engaged, and diverse membership, and support the activities of its units and members. Cover photos: Top: Complementary effect in flowing grains that spontaneously separate similar and well-mixed grains into two charged streams of demixed grains (Troy Shinbrot, Keirnan LaMarche and Ben Glass). Middle: Face-on view of a simulation of Weibel turbulence from intense laser-plasma interactions. (T. Haugbolle and C. Hededal, Niels Bohr Institute). Bottom: A scanning microscope image of platinum-lace nanoballs; liposomes aggregate, providing a foamlike template for a platinum sheet to grow (DOE and Sandia National Laboratories, Albuquerque, NM). Text paper is 50% sugar cane bagasse pulp, 50% recycled fiber, including 30% post consumer fiber, elemental chlorine free. Cover paper is 50% recycled, including 15% post consumer fiber, elemental chlorine free. Annual Report Design: Leanne Poteet/APS/2008 Charts: Krystal Ferguson/APS/2008 ast year, 2007, started out as a very good year for both the American Physical Society and American physics. APS’ journals and meetings showed solidly growing impact, sales, and attendance — with a good mixture Lof US and foreign contributions. In US research, especially rapid growth was seen in biophysics, optics, as- trophysics, fundamental quantum physics and several other areas. -
Cross Sections
Cross Sections DEPARTMENT OF PHYSICS AND ASTRONOMY UNIVERSITY OF ROCHESTER SPRING 2003 Second department alumnus to win the Nobel Prize © THE ROYAL SWEDISH ACADEMY OF SCIENCES Physics and Astronomy • SPRING 2003 Message from the Chair —Arie Bodek graduates, Laura Schmidt and Elizabeth tributed generously to the support of the Because of the great success of the Strychalski were awarded the Catherine department. By completing the form on sesquicentennial celebration, the Uni- Block and Janet Howell Prizes in 2002, the back cover of our newsletter, or by versity has initiated a new tradition and Jason Nordhaus and David Etlinger responding to our current drive for the of hosting a Meliora won Goldwater Scholarships. Mandel endowment, you can continue Weekend reunion every Over the years we have given high (or begin) that tradition of giving that year (see www.rochester. priority to the training of our under- will assure the future excellence of the edu/alumni/). The theme graduate and graduate students. This department. in fall 2003 is “Innova- attention has not gone unnoticed and Other ways to help our cause is to in- tion,” and we plan to has just been recognized in a nation- form any promising students about our highlight the most wide survey of U.S. graduate students summer undergraduate research program recent innovations and conducted in 2001. The Department of (REU), and to encourage students inter- discoveries in physics and astronomy. Physics and Astronomy at Rochester was ested in careers in physics or astronomy We encourage all our alumni and friends ranked second nationwide in overall to apply for graduate study at Rochester. -
ATLAS Installs Final Big Wheel
I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 47 n u m b e r 9 n o V e m b e r 2 0 07 ATLAS installs final big wheel DESY LHC FOCUS BROOKHAVEN FLASH makes pulses Preparing for the Ernest Courant looks at design energy p8 data onslaught p17 back 60 years p26 CCNovCover.indd 1 17/10/07 10:45:38 Project8 9/10/07 10:38 Page 1 NIM CAMAC VME NIMbox CC-USB VME-USB VDIS2 A programmable NIM Module with Controller with USB Controller with USB Diagnostic USB Interface Interface Interface Module for VME ! NPN20 - Progr.Logic Unit, 20 NIM I/O ! NPT20 - Progr. Logic Unit, 20 TTL I/O ! NDL8 - Leading Edge 8-fold Discriminator ! NAD4 - 100 MHz 4 channel F-ADC ! NDA8 - 100 MHz 8 PCI and VME channel DAC, e.g. adapters for CAMAC for detector are also available simulation ! New! Scaler, TDC, MLU, CQ16 MDGG8 ADC2530 and moreÖ 16 channel 12 bit CAMAC Progr. Delay and Gate 8 channel peak QDC, down to 25fC/count Generator, Scaler sensing 13 bit ADC USB cable, driver and software included Desk version (Nembox) for didactical experiments available Developed in collaboration with University of Heidelberg www.wiener-d.com Plein & Baus GmbH. Muellersbaum 20, 51399 Burscheid, Germany Phone: +49 (0)2174 6780, Fax: +49 (0)2174 678 55 CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. -
How US Physicists First Came to Work at CERN
CERN-US COLLABORATION How US physicists first came to work at CERN After help from an eminent US figure, CERN was founded in the 1950s to provide a European stage for physics. Once the curtain was up, US physicists found the new laboratory increasingly attractive. In the first of two articles, Gordon Fraser traces the history of CERN-US collaboration from the post-war era to the advent of collider physics in the 1970s. In the late 1940s, Europe was major role in establishing the US struggling to emerge from the ruins Brookhaven National Laboratory. of the Second World War. The US The establishment of an analo had played a vital role in the con gous European laboratory was to flict, but had been less affected mat Rabi a natural and vital need. erially, and a shining vision of life However, on arrival in Florence he across the Atlantic was a beacon of was disturbed to find that there was hope for millions of Europeans liv no mention of this idea on the ing in austerity, if not misery. agenda. Two Europeans, Pierre i In a speech at Harvard on 5 June Auger (then UNESCO's director of 1947, US Secretary of State George exact and natural sciences) and C Marshall said that the US should Edoardo Amaldi, who was to be a help to "assist in the return of nor constant driving force, helped Rabi mal economic health in the world". Playing a key role in the post-Second World War through the intricacies of European North American "Marshall aid" was groundwork for what would become CERN was US physicist committee formalities. -
BNL Bulletin
the Vol. 61B - No. 17 ulletin May 18, 2007 Distinguished Scientist Emeritus Ernest Courant All Are Welcome to Attend Honored by University of Rochester CFN Ribbon Cutting Ceremony he University of Rochester, where BNL’s Dis- 5/21, 11 a.m. Ttinguished Scientist Emeritus Ernest Courant earned his Ph.D. in 1943, will honor him with the Rochester Distinguished Scholar Medal at this year’s A Highlight of the 2007 Joint NSLS/CFN commencement ceremony, to be held tomorrow, May Users’ Meeting, 5/21-23 19. The University issued the following press release citing Courant and his work: All scientists who work in particle physics today owe a debt to Ernest Courant. His groundbreaking D0180602 scholarship has changed the way we think about and understand the structure of the universe. One of the trio of researchers who originated D0230500 the idea of “strong focusing” accelerators, Pro- fessor Courant is one of the founding fathers of modern high-energy particle physics. Thanks to Professor Courant’s breakthrough in developing Roger Stoutenburgh the first high-energy, strong focusing accelera- he 2007 Joint National Synchrotron Light Source (NSLS) tor—and the particle accelerators that have fol- and Center for Functional Nanomaterials (CFN) Users’ Roger Stoutenburgh T lowed since—physicists have been able to peek Meeting will be held at Berkner Hall from Monday, May 21 inside individual atoms to understand the funda- At BNL, Courant joined the Proton Synchrotron Di- through Wednesday, May 23. The meeting is a forum for re- mental structure of matter, the forces holding it vision as an associate scientist in June 1948. -
A Brief History and Review of Accelerators
A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots. -
C-AD Particle Post
C-AD Particle Post Particle Post June 2007 "Life is a pure flame, and we live by an invisible sun within us" ~Thomas Browne To review previous issues A Note From Our Chairman The RHIC Retreat on July 16-17 will have machine availability as one of its foci. The run this year has a binary character to it. Either we have many stores back-to-back or we have stores separated by large time intervals due to equipment failures or operations inefficiencies. There is a lot to be discussed and then worked on. Despite the difficulties, we are close to the maximum estimated delivered luminosity for Run 7. It is clear that we have the potential to do even better. Stochastic cooling is a great success. We are now a factor of 5 away from our enhanced luminosity goal proposed with electron cooling of ions. C-AD proved once again that it was worthy of ISO 14001 and OHSAS 18001 recertification. Congratulations for getting through the audit with no identified deficiencies and a commendable practice. The DOE Inspector Generals Office will be at BNL in early June to look at cyber security. Remember the rules to have screen savers that timeout after 15-30 minutes of non-use, passwords, lock your offices when leaving and do NOT access adult material websites. June 14 is our Barbeque. Don’t forget to buy a ticket and be in the running for some great prizes and of course great food. Administration Despite the uncertain start to FY 2007, the Department’s financial health is excellent. -
Introduction to Accelerators: Evolution of Accelerators and Modern Day Applications
Lecture 1 Introduction to Accelerators: Evolution of Accelerators and Modern Day Applications Sarah Cousineau, Jeff Holmes, Yan Zhang USPAS January, 2011 What are accelerators used for? • Particle accelerators are devices that produce energetic beams of particles which are used for – Understanding the fundamental building blocks of nature and the forces that act upon them (nuclear and particle physics) – Understanding the structure and dynamics of materials and their properties (physics, chemistry, biology, medicine) – Medical treatment of tumors and cancers – Production of medical isotopes – Sterilization – Ion Implantation to modify the surface of materials • There is active, ongoing work to utilize particle accelerators for – Transmutation of nuclear waste – Generating power more safely in sub-critical nuclear reactors Accelerators by the Numbers World wide inventory of accelerators, in total 15,000. The data have been collected by W. Scarf and W. Wiesczycka (See U. Amaldi Europhysics News, June 31, 2000) Category Number Ion implanters and surface modifications 7,000 Accelerators in industry 1,500 Accelerators in non-nuclear research 1,000 Radiotherapy 5,000 Medical isotopes production 200 Hadron therapy 20 Synchrotron radiation sources 70 Nuclear and particle physics research 110 The most well known category of accelerators – particle physics research accelerators – is one of the smallest in number. The technology for other types of accelerators was born from these machines. Nuclear and Particle Physics • Much of what we know about -
Particle Accelerators and Discoveries in Elementary Particle Physics
2280 PARTICLE ACCELERATORS AND DISCOVERIES IN ELEMENTARY PARTICLE PHYSICS Lawrence W. Jones Randall Laboratory of Physics, University of Michigan Ann Arbor, Michigan 48109-1120 Abstract Some discoveries in elementary particle physics are recounted from personal and his- torical perspective with particular reference to their interaction with particle accelerators. The particular examples chosen include the C/J, the T, and the study of nucleon con- stituents with inelastic electron scattering. Precurser experiments are cited together with the better known discoveries. 2281 PARTICLE ACCELERATORS AND DISCOVERIES IN ELEMENTARY PARTICLE PHYSICS Lawrence W. Jones* Randall Laboratory of Physics, University of Michigan Ann Arbor, Michigan 48109-1120 Dr. Month asked me to prepare a talk on high energy physics discoveries and their relationship to particle accelerators. No particular time period was specified~ however, high energy physics as a field is less than forty years old. This historical subject was a challenge for me as there was clearly far too much to cover in a comprehensive manner in just one hour. Therefore, I was forced to pick and choose. I am not an historian of physics, and I have not made a systematic study of the recent history of particle physics. Rather I am a physicist who is now becoming old enough to have "been there" when some of these discoveries were made. I have used as one source for this talk the material contained in a report prepared for a larger document "Physics in the 1980's" edited by Dr. Brinkman. Martin Perl of Stanford has chaired a subpanel on elementary particle physics of that task force, on which I served.