N.Y. 11F73 INS Mcsnff IS Wum\I I EDITOR's FOREWORD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
論文 / 著書情報 Article / Book Information
論文 / 著書情報 Article / Book Information 題目(和文) 誘導加速シンクロトロンにおける広帯域加速と バリアバケツを用いた ビームハンドリング Title(English) Wide-band acceleration and barrier bucket beam handlings in the induction synchrotron 著者(和文) 由元崇 Author(English) Takashi Yoshimoto 出典(和文) 学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第10210号, 授与年月日:2016年3月26日, 学位の種別:課程博士, 審査員:高山 健,堀岡 一彦,小栗 慶之,長谷川 純,林崎 規託,菊池 崇志 Citation(English) Degree:, Conferring organization: Tokyo Institute of Technology, Report number:甲第10210号, Conferred date:2016/3/26, Degree Type:Course doctor, Examiner:,,,,, 学位種別(和文) 博士論文 Category(English) Doctoral Thesis 種別(和文) 要約 Type(English) Outline Powered by T2R2 (Tokyo Institute Research Repository) Summary “Wide-band acceleration and barrier bucket beam handlings in the induction synchrotron” Since the invention of accelerator at the beginning of the 20th century, so many accelerators has been built and dedicated to the progress in science and technology, especially on the cutting edges of modern particle physics. In the accelerator history, one of the most important inventions is the synchrotron independently invented by Vladimir Veksler and by Edwin McMillan in 1945. It is a circular machine that can produce high energy beams efficiently. The succeeding prominent invention is the principle of strong focusing which was conceived by Nicholas Christofilos in 1949 and found by Ernest Courant, M. Stanley Livingston, and H. Snyder at Brookhaven National Laboratory in 1952 without recognizing the work of Christofilos. The third one is that of separate-function strong-focusing invented by Toshio Kitagaki, which takes a crucial role to realize flexible accelerators such as various synchrotron radiation source or colliders. There are two streams in the frontier of modern synchrotron; one stream is the energy frontier such as Large Hadron Collider (LHC) in the European Organization for Nuclear Research (CERN) and the other is the intensity (or luminosity) frontier such as Japan Proton Accelerator Research Complex (J-PARC) or Super-KEKB in Japan. -
Nicholas Christofilos and the Astron Project in America's Fusion Program
Elisheva Coleman May 4, 2004 Spring Junior Paper Advisor: Professor Mahoney Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program This paper represents my own work in accordance with University regulations The author thanks the Program in Plasma Science and Technology and the Princeton Plasma Physics Laboratory for their support. Introduction The second largest building on the Lawrence Livermore National Laboratory’s campus today stands essentially abandoned, used as a warehouse for odds and ends. Concrete, starkly rectangular and nondescript, Building 431 was home for over a decade to the Astron machine, the testing device for a controlled fusion reactor scheme devised by a virtually unknown engineer-turned-physicist named Nicholas C. Christofilos. Building 431 was originally constructed in the late 1940s before the Lawrence laboratory even existed, for the Materials Testing Accelerator (MTA), the first experiment performed at the Livermore site.1 By the time the MTA was retired in 1955, the Livermore lab had grown up around it, a huge, nationally funded institution devoted to four projects: magnetic fusion, diagnostic weapon experiments, the design of thermonuclear weapons, and a basic physics program.2 When the MTA shut down, its building was turned over to the lab’s controlled fusion department. A number of fusion experiments were conducted within its walls, but from the early sixties onward Astron predominated, and in 1968 a major extension was added to the building to accommodate a revamped and enlarged Astron accelerator. As did much material within the national lab infrastructure, the building continued to be recycled. After Astron’s termination in 1973 the extension housed the Experimental Test Accelerator (ETA), a prototype for a huge linear induction accelerator, the type of accelerator first developed for Astron. -
The Birth and Childhood of a Couple of Twin Brothers V
Proceedings of ICFA Mini-Workshop on Impedances and Beam Instabilities in Particle Accelerators, Benevento, Italy, 18-22 September 2017, CERN Yellow Reports: Conference Proceedings, Vol. 1/2018, CERN-2018-003-CP (CERN, Geneva, 2018) THE BIRTH AND CHILDHOOD OF A COUPLE OF TWIN BROTHERS V. G. Vaccaro, INFN Sezione di Napoli, Naples, Italy Abstract The context in which the concepts of Coupling Imped- Looking Far ance and Universal Stability Charts were born is de- scribed in this paper. The conclusion is that the simulta- Even before the successful achievements of PS and neous appearance of these two concepts was unavoidable. AGS, the scientific community was aware that another step forward was needed. Indeed, the impact of particles INTRODUCTION against fixed targets is very inefficient from the point of view of the energy actually available: for new experi- At beginning of 40’s, the interest around proton accel- ments, much more efficient could be the head on colli- erators seemed to quickly wear out: they were no longer sions between counter-rotating high-energy particles. able to respond to the demand of increasing energy and intensity for new investigations on particle physics. With increasing energy, the energy available in the Inertial Frame (IF) with fixed targets is incomparably Providentially important breakthrough innovations smaller than in the head-on collision (HC). If we want the were accomplished in accelerator science, which pro- same energy in IF using fixed targets, one should build duced leaps forward in the performances of particle ac- gigantic accelerators. In the fixed target case (FT), ac- celerators. cording to relativistic dynamics, an HC-equivalent beam should have the following energy. -
Cyclotrons: Old but Still New
Cyclotrons: Old but Still New The history of accelerators is a history of inventions William A. Barletta Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana US Particle Accelerator School ~ 650 cyclotrons operating round the world Radioisotope production >$600M annually Proton beam radiation therapy ~30 machines Nuclear physics research Nuclear structure, unstable isotopes,etc High-energy physics research? DAEδALUS Cyclotrons are big business US Particle Accelerator School Cyclotrons start with the ion linac (Wiederoe) Vrf Vrf Phase shift between tubes is 180o As the ions increase their velocity, drift tubes must get longer 1 v 1 "c 1 Ldrift = = = "# rf 2 f rf 2 f rf 2 Etot = Ngap•Vrf ==> High energy implies large size US Particle Accelerator School ! To make it smaller, Let’s curl up the Wiederoe linac… Bend the drift tubes Connect equipotentials Eliminate excess Cu Supply magnetic field to bend beam 1 2# mc $ 2# mc " rev = = % = const. frf eZion B eZion B Orbits are isochronous, independent of energy ! US Particle Accelerator School … and we have Lawrence’s* cyclotron The electrodes are excited at a fixed frequency (rf-voltage source) Particles remain in resonance throughout acceleration A new bunch can be accelerated on every rf-voltage peak: ===> “continuous-wave (cw) operation” Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 17, 64 (1931) Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 1707 (1931). * The first cyclotron patent (German) was filed in 1929 by Leó Szilard but never published in a journal US Particle Accelerator School Synchronism only requires that τrev = N/frf “Isochronous” particles take the same revolution time for each turn. -
October 1986
C Fermi National Accelerator Laboratory Monthly Report October 1986 'Ht», i't:.t"tS?t M Fermi/ab Report is published monthly by the Fermi National Accelerator Laboratory Technical Publications Office, P.O. Box 500, MS 107, Batavia, IL, 60510 U.S.A. (312) 840-3278 Editors: R.A. Carrigan, Jr., F.T. Cole, R. Fenner, L. Voyvodic Contributing Editors: D. Beatty, M. Bodnarczuk, R. Craven, D. Green, L. McLerran, S. Pruss, R. Vidal Editorial Assistant: S. Winchester The presentation of material in Fermilab Report is not intended to substitute for nor preclude its publication in a professional journal, and references to articles herein should not be cited in such journals. Contributions, comments, and requests for copies should be addressed to the Fermilab Technical Publications Office. 86/8 Fermi National Accelerator Laboratory 0090.01 011 the cover: M. Stanley Livingston (May 25, 1905 - August 25, 1986) and Ernest 0. Lawrence beside one of the earliest cyclotrons ca. 1933. A remembrance of M.S. Livingston begins on page 21 of this issue. Operated by Universities Research Association, Inc., under contract with the United States Department of Energy Table of Contents Who's Who in the Upcoming Fixed-Target Run? Mark W. Bodnarczuk Saturday Morning Physics: a Report Card 17 Drasko Jovanovic, Barbara Grannis, and Marjorie Bardeen M. Stanley Livingston; 1905 - 1986 21 F.T. Cole Manuscripts, Notes, Lectures, and Colloquia Prepared or Presented from September 21 to October 20, 1986 23 Dates to Remember inside back cover Who's Who in the Upcoming Fixed-Target Physics Run? Mark W. Bodnarczuk Introduction The purpose of this article is to identify the 16 experiments and major test beam programs that will operate during the upcoming fixed-target run scheduled to begin in the middle of March 1987. -
Center for History of Physics Newsletter, Spring 2008
One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter. -
Accelerators, Colliders, and Snakes
P1: FDS October 14, 2003 15:16 Annual Reviews AR199-FM Ernest D. Courant 17 Sep 2003 18:1 AR AR199-NS53-01.tex AR199-NS53-01.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.nucl.53.041002.110450 Annu. Rev. Nucl. Part. Sci. 2003. 53:1–37 doi: 10.1146/annurev.nucl.53.041002.110450 Copyright c 2003 by Annual Reviews. All rights reserved ACCELERATORS, COLLIDERS, AND SNAKES Ernest D. Courant Brookhaven National Laboratory, Upton, New York 11973; email: [email protected] Key Words particle accelerators, storage ring, spin, polarized beams PACS Codes 01.60. q, 01.65. g + + ■ Abstract The author traces his involvement in the evolution of particle accelera- tors over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the “strong-focusing” method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and “Siberian snakes” as a technique for miti- gating these resonances. CONTENTS 1. BEGINNINGS ...................................................... 2 1.1. Growing Up .................................................... 2 1.2. Rochester ...................................................... 4 1.3. Montreal ....................................................... 5 1.4. Cornell ........................................................ 6 2. BROOKHAVEN .................................................... 7 2.1. The Cosmotron -
2007 Annual Report APS
American Physical Society APS 2007 Annual Report APS The AMERICAN PHYSICAL SOCIETY strives to: Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity; Collaborate with national scientific societies for the advancement of science, science education, and the science community; Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration; Have an active, engaged, and diverse membership, and support the activities of its units and members. Cover photos: Top: Complementary effect in flowing grains that spontaneously separate similar and well-mixed grains into two charged streams of demixed grains (Troy Shinbrot, Keirnan LaMarche and Ben Glass). Middle: Face-on view of a simulation of Weibel turbulence from intense laser-plasma interactions. (T. Haugbolle and C. Hededal, Niels Bohr Institute). Bottom: A scanning microscope image of platinum-lace nanoballs; liposomes aggregate, providing a foamlike template for a platinum sheet to grow (DOE and Sandia National Laboratories, Albuquerque, NM). Text paper is 50% sugar cane bagasse pulp, 50% recycled fiber, including 30% post consumer fiber, elemental chlorine free. Cover paper is 50% recycled, including 15% post consumer fiber, elemental chlorine free. Annual Report Design: Leanne Poteet/APS/2008 Charts: Krystal Ferguson/APS/2008 ast year, 2007, started out as a very good year for both the American Physical Society and American physics. APS’ journals and meetings showed solidly growing impact, sales, and attendance — with a good mixture Lof US and foreign contributions. In US research, especially rapid growth was seen in biophysics, optics, as- trophysics, fundamental quantum physics and several other areas. -
Cross Sections
Cross Sections DEPARTMENT OF PHYSICS AND ASTRONOMY UNIVERSITY OF ROCHESTER SPRING 2003 Second department alumnus to win the Nobel Prize © THE ROYAL SWEDISH ACADEMY OF SCIENCES Physics and Astronomy • SPRING 2003 Message from the Chair —Arie Bodek graduates, Laura Schmidt and Elizabeth tributed generously to the support of the Because of the great success of the Strychalski were awarded the Catherine department. By completing the form on sesquicentennial celebration, the Uni- Block and Janet Howell Prizes in 2002, the back cover of our newsletter, or by versity has initiated a new tradition and Jason Nordhaus and David Etlinger responding to our current drive for the of hosting a Meliora won Goldwater Scholarships. Mandel endowment, you can continue Weekend reunion every Over the years we have given high (or begin) that tradition of giving that year (see www.rochester. priority to the training of our under- will assure the future excellence of the edu/alumni/). The theme graduate and graduate students. This department. in fall 2003 is “Innova- attention has not gone unnoticed and Other ways to help our cause is to in- tion,” and we plan to has just been recognized in a nation- form any promising students about our highlight the most wide survey of U.S. graduate students summer undergraduate research program recent innovations and conducted in 2001. The Department of (REU), and to encourage students inter- discoveries in physics and astronomy. Physics and Astronomy at Rochester was ested in careers in physics or astronomy We encourage all our alumni and friends ranked second nationwide in overall to apply for graduate study at Rochester. -
ATLAS Installs Final Big Wheel
I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 47 n u m b e r 9 n o V e m b e r 2 0 07 ATLAS installs final big wheel DESY LHC FOCUS BROOKHAVEN FLASH makes pulses Preparing for the Ernest Courant looks at design energy p8 data onslaught p17 back 60 years p26 CCNovCover.indd 1 17/10/07 10:45:38 Project8 9/10/07 10:38 Page 1 NIM CAMAC VME NIMbox CC-USB VME-USB VDIS2 A programmable NIM Module with Controller with USB Controller with USB Diagnostic USB Interface Interface Interface Module for VME ! NPN20 - Progr.Logic Unit, 20 NIM I/O ! NPT20 - Progr. Logic Unit, 20 TTL I/O ! NDL8 - Leading Edge 8-fold Discriminator ! NAD4 - 100 MHz 4 channel F-ADC ! NDA8 - 100 MHz 8 PCI and VME channel DAC, e.g. adapters for CAMAC for detector are also available simulation ! New! Scaler, TDC, MLU, CQ16 MDGG8 ADC2530 and moreÖ 16 channel 12 bit CAMAC Progr. Delay and Gate 8 channel peak QDC, down to 25fC/count Generator, Scaler sensing 13 bit ADC USB cable, driver and software included Desk version (Nembox) for didactical experiments available Developed in collaboration with University of Heidelberg www.wiener-d.com Plein & Baus GmbH. Muellersbaum 20, 51399 Burscheid, Germany Phone: +49 (0)2174 6780, Fax: +49 (0)2174 678 55 CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. -
How US Physicists First Came to Work at CERN
CERN-US COLLABORATION How US physicists first came to work at CERN After help from an eminent US figure, CERN was founded in the 1950s to provide a European stage for physics. Once the curtain was up, US physicists found the new laboratory increasingly attractive. In the first of two articles, Gordon Fraser traces the history of CERN-US collaboration from the post-war era to the advent of collider physics in the 1970s. In the late 1940s, Europe was major role in establishing the US struggling to emerge from the ruins Brookhaven National Laboratory. of the Second World War. The US The establishment of an analo had played a vital role in the con gous European laboratory was to flict, but had been less affected mat Rabi a natural and vital need. erially, and a shining vision of life However, on arrival in Florence he across the Atlantic was a beacon of was disturbed to find that there was hope for millions of Europeans liv no mention of this idea on the ing in austerity, if not misery. agenda. Two Europeans, Pierre i In a speech at Harvard on 5 June Auger (then UNESCO's director of 1947, US Secretary of State George exact and natural sciences) and C Marshall said that the US should Edoardo Amaldi, who was to be a help to "assist in the return of nor constant driving force, helped Rabi mal economic health in the world". Playing a key role in the post-Second World War through the intricacies of European North American "Marshall aid" was groundwork for what would become CERN was US physicist committee formalities. -
BNL Bulletin
the Vol. 61B - No. 17 ulletin May 18, 2007 Distinguished Scientist Emeritus Ernest Courant All Are Welcome to Attend Honored by University of Rochester CFN Ribbon Cutting Ceremony he University of Rochester, where BNL’s Dis- 5/21, 11 a.m. Ttinguished Scientist Emeritus Ernest Courant earned his Ph.D. in 1943, will honor him with the Rochester Distinguished Scholar Medal at this year’s A Highlight of the 2007 Joint NSLS/CFN commencement ceremony, to be held tomorrow, May Users’ Meeting, 5/21-23 19. The University issued the following press release citing Courant and his work: All scientists who work in particle physics today owe a debt to Ernest Courant. His groundbreaking D0180602 scholarship has changed the way we think about and understand the structure of the universe. One of the trio of researchers who originated D0230500 the idea of “strong focusing” accelerators, Pro- fessor Courant is one of the founding fathers of modern high-energy particle physics. Thanks to Professor Courant’s breakthrough in developing Roger Stoutenburgh the first high-energy, strong focusing accelera- he 2007 Joint National Synchrotron Light Source (NSLS) tor—and the particle accelerators that have fol- and Center for Functional Nanomaterials (CFN) Users’ Roger Stoutenburgh T lowed since—physicists have been able to peek Meeting will be held at Berkner Hall from Monday, May 21 inside individual atoms to understand the funda- At BNL, Courant joined the Proton Synchrotron Di- through Wednesday, May 23. The meeting is a forum for re- mental structure of matter, the forces holding it vision as an associate scientist in June 1948.