Lecture 2 Aspects of Transverse Beam Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Sextupole Orbit Offsets in the Aps Storage Ring ∗
Proceedings of the 1999 Particle Accelerator Conference, New York, 1999 MEASUREMENT OF SEXTUPOLE ORBIT OFFSETS IN THE APS STORAGE RING ∗ M. Borland, E.A. Crosbie, and N.S. Sereno ANL, Argonne, IL Abstract However, we encountered persistent disagreements be- tween our model of the ring and measurements of the beta Horizontal orbit errors at the sextupoles in the Advanced functions. Hence, a program to measure the beam posi- Photon Source (APS) storage ring can cause changes in tion in sextupoles directly was undertaken. Note that while tune and modulation of the beta functions around the ring. we sometimes speak of measuring sextupole “offsets” or To determine the significance of these effects requires “positions” and of “sextupole miscentering,” we are in fact knowing the orbit relative to the magnetic center of the sex- measuring the position of the beam relative to the sextupole tupoles. The method considered here to determine the hor- center for a particular lattice configuration and steering. izontal beam position in a given sextupole is to measure the tune shift caused by a change in the sextupole strength. The tune shift and a beta function for the same plane uniquely 2 PRINCIPLE OF THE MEASUREMENT determine the horizontal beam position in the sextupole. The measurement relies on the quadrupole field component The beta function at the sextupole was determined by prop- generated by a displaced sextupole magnet. It also makes agating the beta functions measured at nearby quadrupoles use of the existence of individual power supplies for the to the sextupole location. This method was used to measure 280 sextupoles and 400 quadrupoles in the APS. -
Dipole Magnets for the Technological Electron Accelerators
9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAL043 DIPOLE MAGNETS FOR THE TECHNOLOGICAL ELECTRON ACCELERATORS V. A. Bovda, A. M. Bovda, I. S. Guk, A. N. Dovbnya, A. Yu. Zelinsky, S. G. Kononenko, V. N. Lyashchenko, A. O. Mytsykov, L. V. Onishchenko, National Scientific Centre Kharkiv Institute of Physics and Technology, 61108, Kharkiv, Ukraine Abstract magnets under irradiation was about 38 °С. Whereas magnetic flux of Nd-Fe-B magnets decreased in 0.92 and For a 10-MeV technological accelerator, a dipole mag- 0.717 times for 16 Grad and 160 Grad accordingly, mag- net with a permanent magnetic field was created using the netic performance of Sm-Co magnets remained un- SmCo alloy. The maximum magnetic field in the magnet changed under the same radiation doses. Radiation activ- was 0.3 T. The magnet is designed to measure the energy ity of both Nd-Fe-B and Sm-Co magnets after irradiation of the beam and to adjust the accelerator for a given ener- was not increased keeping critical levels. It makes the Nd- gy. Fe-B and Sm-Co permanent magnets more appropriate for For a linear accelerator with an energy of 23 MeV, a di- accelerator’s applications. The additional advantage of pole magnet based on the Nd-Fe-B alloy was developed Sm-Co magnets is low temperature coefficient of rem- and fabricated. It was designed to rotate the electron beam anence 0.035 (%/°C). at 90 degrees. The magnetic field in the dipole magnet To assess the parameters of dipole magnet, the simula- along the path of the beam was 0.5 T. -
Nicholas Christofilos and the Astron Project in America's Fusion Program
Elisheva Coleman May 4, 2004 Spring Junior Paper Advisor: Professor Mahoney Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program This paper represents my own work in accordance with University regulations The author thanks the Program in Plasma Science and Technology and the Princeton Plasma Physics Laboratory for their support. Introduction The second largest building on the Lawrence Livermore National Laboratory’s campus today stands essentially abandoned, used as a warehouse for odds and ends. Concrete, starkly rectangular and nondescript, Building 431 was home for over a decade to the Astron machine, the testing device for a controlled fusion reactor scheme devised by a virtually unknown engineer-turned-physicist named Nicholas C. Christofilos. Building 431 was originally constructed in the late 1940s before the Lawrence laboratory even existed, for the Materials Testing Accelerator (MTA), the first experiment performed at the Livermore site.1 By the time the MTA was retired in 1955, the Livermore lab had grown up around it, a huge, nationally funded institution devoted to four projects: magnetic fusion, diagnostic weapon experiments, the design of thermonuclear weapons, and a basic physics program.2 When the MTA shut down, its building was turned over to the lab’s controlled fusion department. A number of fusion experiments were conducted within its walls, but from the early sixties onward Astron predominated, and in 1968 a major extension was added to the building to accommodate a revamped and enlarged Astron accelerator. As did much material within the national lab infrastructure, the building continued to be recycled. After Astron’s termination in 1973 the extension housed the Experimental Test Accelerator (ETA), a prototype for a huge linear induction accelerator, the type of accelerator first developed for Astron. -
Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility
OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring. -
Cyclotrons: Old but Still New
Cyclotrons: Old but Still New The history of accelerators is a history of inventions William A. Barletta Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana US Particle Accelerator School ~ 650 cyclotrons operating round the world Radioisotope production >$600M annually Proton beam radiation therapy ~30 machines Nuclear physics research Nuclear structure, unstable isotopes,etc High-energy physics research? DAEδALUS Cyclotrons are big business US Particle Accelerator School Cyclotrons start with the ion linac (Wiederoe) Vrf Vrf Phase shift between tubes is 180o As the ions increase their velocity, drift tubes must get longer 1 v 1 "c 1 Ldrift = = = "# rf 2 f rf 2 f rf 2 Etot = Ngap•Vrf ==> High energy implies large size US Particle Accelerator School ! To make it smaller, Let’s curl up the Wiederoe linac… Bend the drift tubes Connect equipotentials Eliminate excess Cu Supply magnetic field to bend beam 1 2# mc $ 2# mc " rev = = % = const. frf eZion B eZion B Orbits are isochronous, independent of energy ! US Particle Accelerator School … and we have Lawrence’s* cyclotron The electrodes are excited at a fixed frequency (rf-voltage source) Particles remain in resonance throughout acceleration A new bunch can be accelerated on every rf-voltage peak: ===> “continuous-wave (cw) operation” Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 17, 64 (1931) Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 1707 (1931). * The first cyclotron patent (German) was filed in 1929 by Leó Szilard but never published in a journal US Particle Accelerator School Synchronism only requires that τrev = N/frf “Isochronous” particles take the same revolution time for each turn. -
Superconducting Magnets for Future Particle Accelerators
lECHWQVE DE CRYOGEM CEA/SACLAY El DE MiAGHÉllME DSM FR0107756 s;: DAPNIA/STCM-00-07 May 2000 SUPERCONDUCTING MAGNETS FOR FUTURE PARTICLE ACCELERATORS A. Devred Présenté aux « Sixièmes Journées d'Aussois (France) », 16-19 mai 2000 Dénnrtfimpnt H'Astrnnhvsinnp rJp Phvsinue des Particules, de Phvsiaue Nucléaire et de l'Instrumentation Associée PLEASE NOTE THAT ALL MISSING PAGES ARE SUPPOSED TO BE BLANK Superconducting Magnets for Future Particle Accelerators Arnaud Devred CEA-DSM-DAPNIA-STCM Sixièmes Journées d'Aussois 17 mai 2000 Contents Magnet Types Brief History and State of the Art Review of R&D Programs - LHC Upgrade -VLHC -TESLA Muon Collider Conclusion Magnet Classification • Four types of superconducting magnet systems are presently found in large particle accelerators - Bending and focusing magnets (arcs of circular accelerators) - Insertion and final focusing magnets (to control beam optics near targets or collision points) - Corrector magnets (e.g., to correct field distortions produced by persistent magnetization currents in arc magnets) - Detector magnets (embedded in detector arrays surrounding targets or collision points) Bending and Focusing Magnets • Bending and focusing magnets are distributed in a regular lattice of cells around the arcs of large circular accelerators 106.90 m ^ j ~ 14.30 m 14.30 m 14.30 m MBA I MBB MB. ._A. Ii p71 ^M^^;. t " MB. .__i B ^-• • MgAMBA, | MBMBB B , MQ: Lattice Quadrupole MBA: Dipole magnet Type A MO: Landau Octupole MBB: Dipole magnet Type B MQT: Tuning Quadrupole MCS: Local Sextupole corrector MQS: Skew Quadrupole MCDO: Local combined decapole and octupole corrector MSCB: Combined Lattice Sextupole (MS) or skew sextupole (MSS) and Orbit Corrector (MCB) BPM: Beam position monitor Cell of the proposed magnet lattice for the LHC arcs (LHC counts 8 arcs made up of 23 such cells) Bending and Focusing Magnets (Cont.) • These magnets are in large number (e.g., 1232 dipole magnets and 386 quadrupole magnets in LHC), • They must be mass-produced in industry, • They are the most expensive components of the machine. -
Design of the Combined Function Dipole-Quadrupoles (DQS)
9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML135 DESIGN OF THE COMBINED FUNCTION DIPOLE-QUADRUPOLES(DQS) WITH HIGH GRADIENTS* Zhiliang Ren, Hongliang Xu†, Bo Zhang‡, Lin Wang, Xiangqi Wang, Tianlong He, Chao Chen, NSRL, USTC, Hefei, Anhui 230029, China Abstract few times [3]. The pole shape is designed to reach the required field quality of 5×10-4. The 2D pole profile is Normally, combined function dipole-quadrupoles can be simulated by using POSSION and Radia, while the 3D obtained with the design of tapered dipole or offset model by using Radia and OPERA-3D. quadrupole. However, the tapered dipole design cannot achieve a high gradient field, as it will lead to poor field MAGNET DESIGN quality in the low field area of the magnet bore, and the design of offset quadrupole will increase the magnet size In a conventional approach, the gradient field of DQ can and power consumption. Finally, the dipole-quadrupole be generated by varying the gap along the transverse design developed is in between the offset quadrupole and direction, which also called tapered dipole design. As it is septum quadrupole types. The dimensions of the poles and shown in Fig. 1, the pole of DQ magnet can be regarded as the coils of the low field side have been reduced. The 2D part of the ideal hyperbola. The ideal hyperbola with pole profile is simulated and optimized by using POSSION asymptotes at Y = 0 and X = -B0/G is the pole of a very and Radia, while the 3D model using Radia and OPERA- large quadrupole. -
Study of the Extracted Beam Energy As a Function of Operational Parameters of a Medical Cyclotron
instruments Article Study of the Extracted Beam Energy as a Function of Operational Parameters of a Medical Cyclotron Philipp Häffner 1,*, Carolina Belver Aguilar 1, Saverio Braccini 1 , Paola Scampoli 1,2 and Pierre Alexandre Thonet 3 1 Albert Einstein Center for Fundamental Physics (AEC), Laboratory of High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; [email protected] (C.B.A.); [email protected] (S.B.); [email protected] (P.S.) 2 Department of Physics “Ettore Pancini”, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy 3 CERN, 1211 Geneva, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-316314060 Received: 5 November 2019; Accepted: 3 December 2019; Published: 5 December 2019 Abstract: The medical cyclotron at the Bern University Hospital (Inselspital) is used for both routine 18F production for Positron Emission Tomography (PET) and multidisciplinary research. It provides proton beams of variable intensity at a nominal fixed energy of 18 MeV. Several scientific activities, such as the measurement of nuclear reaction cross-sections or the production of non-conventional radioisotopes for medical applications, require a precise knowledge of the energy of the beam extracted from the accelerator. For this purpose, a study of the beam energy was performed as a function of cyclotron operational parameters, such as the magnetic field in the dipole magnet or the position of the extraction foil. The beam energy was measured at the end of the 6 m long Beam Transfer Line (BTL) by deflecting the accelerated protons by means of a dipole electromagnet and by assessing the deflection angle with a beam profile detector. -
Lecture Notes For: Accelerator Physics and Technologies for Linear Colliders
Lecture Notes for: Accelerator Physics and Technologies for Linear Colliders (University of Chicago, Physics 575) ¢¡ ¢¡ February 26 and 28 , 2002 Frank Zimmermann CERN, SL Division 1 Contents 1 Beam-Delivery Overview 3 2 Collimation System 3 2.1 Halo Particles . 3 2.2 Functions of Collimation System . 4 2.3 Collimator Survival . 4 2.4 Muons . 7 2.5 Downstream Sources of Beam Halo . 8 2.6 Collimator Wake Fields . 10 2.7 Collimation Optics . 12 3 Final Focus 14 3.1 Purpose . 14 3.2 Chromatic Correction . 14 3.3 £¥¤ Transformation . 20 3.4 Performance Limitations . 22 3.5 Tolerances . 24 3.6 Final Quadrupole . 26 3.7 Oide Effect . 27 4 Collisions and Luminosity 29 4.1 Luminosity . 29 4.2 Beam-Beam Effects . 29 4.3 Crossing Angle . 31 4.4 Crab Cavity . 33 4.5 IP Orbit Feedback . 35 4.6 Spot Size Tuning . 36 5 Spent Beam 42 2 1 Beam-Delivery Overview The beam delivery system is the part of a linear collider following the main linac. It typically consists of a collimation system, a final focus, and a beam-beam collision point located inside a particle-physics detector. Also the beam exit line required for the disposal of the spent beam is often subsumed under the term ‘beam delivery’. See Fig. 1. In addition, somewhere further upstream, there might be a beam switchyard from which the beams can be sent to several different interaction points, and possibly a bending section (‘big bend’) which provides a crossing angle and changes the direction of the beam line after collimation, so as to prevent the collimation debris from reaching the detector. -
Field Measurement of the Quadrupole Magnet for Csns/Rcs
5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-TUPRO096 FIELD MEASUREMENT OF THE QUADRUPOLE MAGNET FOR CSNS/RCS L. LI , C. D Deng, W. Kang, S. Li, D. Tang, B. G. Yin, J. X. Zhou, Z. Zhang, H. J. Wang, IHEP, Beijing, China Abstract The quadrupole magnets are being manufactured and Table 1: Main Design Parameters and Specification measured for China Spallation Neutron Source Rapid Magnet RCS- RCS- RCS- RCS- Cycling Synchrotron (CSNS/RCS) since 2012. In order to type QA QB QC QD evaluate the magnet qualities, a dedicated magnetic measurement system has been developed. The main Aperture 206mm 272mm 222mm 253mm quadrupole magnets have been excited with DC current biased 25Hz repetition rate. The measurement of Effe. length 410mm 900mm 450mm 620mm magnetic field was mainly based on integral field and Max. 6.6 5 T/m 6 T/m 6.35T/m harmonics measurements at both static and dynamic gradient T/m conditions. This paper describes the magnet design, the Unallowed - - - - field measurement system and presents the results of the 5×10 4 5×10 4 5×10 4 5×10 4 quadrupole magnet. multipole Allowed - - - - 4×10 4 4×10 4 4×10 4 4×10 4 INTRODUCTION multipole 6×10-4 6×10-4 6×10-4 6×10-4 The China Spallation Neutron Source [1] is located in B6/B2 ,B10/B2 Dongguan city, Guangdong Province, China. The CSNS Lin. accelerator mainly consists of an 80Mev an H-Linac 2% 1.5% 1.5% 1.5% accelerator, a 1.6Gev Rapid Cycling Synchrotron (RCS) deviation and two beam transport lines. -
Synchrotron Radiation Complex ISI-800 V
Synchrotron radiation complex ISI-800 V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak, I. Karnaukhov, A. Shcherbakov, A. Zelinsky To cite this version: V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak, I. Karnaukhov, et al.. Synchrotron radiation complex ISI-800. Journal de Physique IV Proceedings, EDP Sciences, 1994, 04 (C9), pp.C9-341-C9- 348. 10.1051/jp4:1994958. jpa-00253521 HAL Id: jpa-00253521 https://hal.archives-ouvertes.fr/jpa-00253521 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C9, supplkment au Journal de Physique HI, Volume 4, novembre 1994 Synchrotron radiation complex ISI-800 V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak*, I. Karnaukhov*, A. Shcherbakov* and A. Zelinsky* Institute of Metal Physics, Academy of Science of Ukraine, 252142 Kiev, Ukraine * Kharkov Institute of Physics and Technology, 310108 Kharkov, Ukraine Basis considerations for the choice of a synchrotron light source dedicated for Ukrainian National Synchrotron Centre is presented. Considering experiments and technological processes to be carried out 800 MeV compact four superperiod electron ring of third generation was chosen. The synchrotron light generated by the electron beam with current up to 200 mA and the radiation emittance of 2.7*10-8 m*rad would be utilized by 24 beam lines. -
Cyclotron K-Value: → K Is the Kinetic Energy Reach for Protons from Bending Strength in Non-Relativistic Approximation
1 Cyclotrons - Outline • cyclotron concepts history of the cyclotron, basic concepts and scalings, focusing, classification of cyclotron-like accelerators • medical cyclotrons requirements for medical applications, cyclotron vs. synchrotron, present research: moving organs, contour scanning, cost/size optimization; examples • cyclotrons for research high intensity, varying ions, injection/extraction challenge, existing large cyclotrons, new developments • summary development routes, Pro’s and Con’s of cyclotrons M.Seidel, Cyclotrons - 2 The Classical Cyclotron two capacitive electrodes „Dees“, two gaps per turn internal ion source homogenous B field constant revolution time (for low energy, 훾≈1) powerful concept: simplicity, compactness continuous injection/extraction multiple usage of accelerating voltage M.Seidel, Cyclotrons - 3 some History … first cyclotron: 1931, Berkeley Lawrence & Livingston, 1kV gap-voltage 80keV Protons 27inch Zyklotron Ernest Lawrence, Nobel Prize 1939 "for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements" John Lawrence (center), 1940’ies first medical applications: treating patients with neutrons generated in the 60inch cyclotron M.Seidel, Cyclotrons - 4 classical cyclotron - isochronicity and scalings continuous acceleration revolution time should stay constant, though Ek, R vary magnetic rigidity: orbit radius from isochronicity: deduced scaling of B: thus, to keep the isochronous condition, B must be raised in proportion