Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring. The quality of the design is measured by the so-called width of Good Field Region (GFR) in the magnetic field generated by the magnet in a particular configuration, e.g. quadrupole configuration. The width of GFR is defined upon the multipole error in magnetic field strength, in particular the error being less than 0.1%. The design requirement for the magnet was to have the GFR at least ±1.0 cm. It is noted that the existing or preliminary design of the magnet (Dallin, 2018) has only achieved ±0.8 cm GFR. This thesis was motivated to design the magnet of the quadrupole so that the foregoing design requirement can be met. The secondary motivation of this thesis was to improve the design of the magnet so that the bad edge effect of the magnet can be reduced. Increase of the width of GFR may be achieved by reduction of the multipole errors. The shape of the magnet pole is a major factor to cause these errors. An optimal design of the shape of the magnet pole was attempted in this thesis. Specifically, a simulation-based trial-and-error procedure was taken for the optimal design partly due to some difficulty to represent the shape of the magnet pole analytically. This procedure was acceptable as a pilot try for a more sophisticated optimal design that may follow in the future. Reduction of the bad edge effect with the magnet may be reduced by careful modification of the shape of the side or edge of the magnet. The result of this thesis is very encouraging; specifically, the width of ±1.1 cm of GFR has been achieved within the field region. The result thus gives a proof of the proposed design approach with the procedure. Further, the bad edge effect was also reduced. This thesis has made a contribution in the field of synchrotron radiation machinery with the proposed design approach to the magnet. The proposed approach is simple and can be implemented in any synchrotron radiation facility. ii Acknowledgements First, I would like to express my sincere gratefulness to my supervisors Dr. Chris Zhang and Dr. Mark Boland for their constant support. Their incredible guidance and motivation helped me to successfully complete my MSc study program. Starting from the coursework, giving me a summer internship at Canadian Light Source Inc., helping me with the research proposal, guiding me through the whole research and writing the thesis, I can’t think a better supervisor than them. Also, their guidance and contribution to my attending to a conference as well as conference paper writing, opened a new door of my expertise for which I will always be grateful to them. I would also like to thank my advisory committee members, Dr. Daniel Chen and Dr. Madan M. Gupta, for their helpful advice and suggestions from the first Advisory Committee meeting. I would also like to express my gratitude to Les Dallin who is an accelerator physicist and scientist at Canadian Light Source Inc. for his extended collaboration and valuable suggestions which contributed greatly to the development of this research. Also, I would like to thank Drew Bertwistle who is also an accelerator physicist at Canadian Light Source Inc. for providing me the necessary software licenses and the software using instructions. Again, a special thank goes to the Canadian Light Source staff especially Accelerator Operations and Development (AOD) staff, for their help and co-operation without which it would be difficult to accomplish the goal of this research. Finally, I would like to express my profound gratitude to my parents and my siblings for providing me continuous encouragement and support throughout my whole study program. This accomplishment would not have been possible without their support. iii Table of Contents Permission to Use ............................................................................................................................ i Abstract ........................................................................................................................................... ii Acknowledgements ........................................................................................................................ iii Table of Contents ........................................................................................................................... iv List of Figures ............................................................................................................................... vii List of Abbreviations ..................................................................................................................... xi : Introduction .................................................................................................................. 1 1.1 Background of the Research ................................................................................................. 1 1.2 Motivation and Research Problem ........................................................................................ 6 1.3 Research Objectives and Scope............................................................................................. 9 1.4 Organization of the Thesis .................................................................................................. 10 : Background and Literature Review ........................................................................... 11 2.1 Introduction ......................................................................................................................... 11 2.2 Electromagnets in a Synchrotron ........................................................................................ 11 2.2.1 Dipole ........................................................................................................................... 11 2.2.2 Quadrupole ................................................................................................................... 12 2.2.3 Sextupole ...................................................................................................................... 13 2.3 Requirements for the Quadrupole ....................................................................................... 14 2.3.1 Magnetic requirements of the quadrupole .................................................................... 14 2.3.2 Structural requirements of the quadrupole ................................................................... 15 2.4 Design of the Pole Shape of the Quadrupole in Different Synchrotrons ............................ 18 2.6 Conclusion ........................................................................................................................... 28 : Analysis of the Quadrupole ........................................................................................ 29 iv 3.1 Introduction ......................................................................................................................... 29 3.2 Magnetic Field in a Quadrupole ..................................................................................... 29 3.3 Multipole Errors in a Quadrupole ....................................................................................... 32 3.5 Governing Equations ........................................................................................................... 34 3.6 Simulation Software ............................................................................................................ 36 3.7 Summary ............................................................................................................................. 37 : Optimal Design of the Geometry of Magnet in a Quadrupole ................................... 38 4.1 Introduction ........................................................................................................................
Recommended publications
  • Mass Spectrometry: Quadrupole Mass Filter
    Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory.
    [Show full text]
  • Ph501 Electrodynamics Problem Set 8 Kirk T
    Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald (2001) [email protected] http://physics.princeton.edu/~mcdonald/examples/ Princeton University 2001 Ph501 Set 8, Problem 1 1 1. Wire with a Linearly Rising Current A neutral wire along the z-axis carries current I that varies with time t according to ⎧ ⎪ ⎨ 0(t ≤ 0), I t ( )=⎪ (1) ⎩ αt (t>0),αis a constant. Deduce the time-dependence of the electric and magnetic fields, E and B,observedat apoint(r, θ =0,z = 0) in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that ct r and ct = r + , where c is the speed of light and r. The related, but more intricate case of a solenoid with a linearly rising current is considered in http://physics.princeton.edu/~mcdonald/examples/solenoid.pdf Princeton University 2001 Ph501 Set 8, Problem 2 2 2. Harmonic Multipole Expansion A common alternative to the multipole expansion of electromagnetic radiation given in the Notes assumes from the beginning that the motion of the charges is oscillatory with angular frequency ω. However, we still use the essence of the Hertz method wherein the current density is related to the time derivative of a polarization:1 J = p˙ . (2) The radiation fields will be deduced from the retarded vector potential, 1 [J] d 1 [p˙ ] d , A = c r Vol = c r Vol (3) which is a solution of the (Lorenz gauge) wave equation 1 ∂2A 4π ∇2A − = − J. (4) c2 ∂t2 c Suppose that the Hertz polarization vector p has oscillatory time dependence, −iωt p(x,t)=pω(x)e .
    [Show full text]
  • Measurement of Sextupole Orbit Offsets in the Aps Storage Ring ∗
    Proceedings of the 1999 Particle Accelerator Conference, New York, 1999 MEASUREMENT OF SEXTUPOLE ORBIT OFFSETS IN THE APS STORAGE RING ∗ M. Borland, E.A. Crosbie, and N.S. Sereno ANL, Argonne, IL Abstract However, we encountered persistent disagreements be- tween our model of the ring and measurements of the beta Horizontal orbit errors at the sextupoles in the Advanced functions. Hence, a program to measure the beam posi- Photon Source (APS) storage ring can cause changes in tion in sextupoles directly was undertaken. Note that while tune and modulation of the beta functions around the ring. we sometimes speak of measuring sextupole “offsets” or To determine the significance of these effects requires “positions” and of “sextupole miscentering,” we are in fact knowing the orbit relative to the magnetic center of the sex- measuring the position of the beam relative to the sextupole tupoles. The method considered here to determine the hor- center for a particular lattice configuration and steering. izontal beam position in a given sextupole is to measure the tune shift caused by a change in the sextupole strength. The tune shift and a beta function for the same plane uniquely 2 PRINCIPLE OF THE MEASUREMENT determine the horizontal beam position in the sextupole. The measurement relies on the quadrupole field component The beta function at the sextupole was determined by prop- generated by a displaced sextupole magnet. It also makes agating the beta functions measured at nearby quadrupoles use of the existence of individual power supplies for the to the sextupole location. This method was used to measure 280 sextupoles and 400 quadrupoles in the APS.
    [Show full text]
  • Superconducting Magnets for Future Particle Accelerators
    lECHWQVE DE CRYOGEM CEA/SACLAY El DE MiAGHÉllME DSM FR0107756 s;: DAPNIA/STCM-00-07 May 2000 SUPERCONDUCTING MAGNETS FOR FUTURE PARTICLE ACCELERATORS A. Devred Présenté aux « Sixièmes Journées d'Aussois (France) », 16-19 mai 2000 Dénnrtfimpnt H'Astrnnhvsinnp rJp Phvsinue des Particules, de Phvsiaue Nucléaire et de l'Instrumentation Associée PLEASE NOTE THAT ALL MISSING PAGES ARE SUPPOSED TO BE BLANK Superconducting Magnets for Future Particle Accelerators Arnaud Devred CEA-DSM-DAPNIA-STCM Sixièmes Journées d'Aussois 17 mai 2000 Contents Magnet Types Brief History and State of the Art Review of R&D Programs - LHC Upgrade -VLHC -TESLA Muon Collider Conclusion Magnet Classification • Four types of superconducting magnet systems are presently found in large particle accelerators - Bending and focusing magnets (arcs of circular accelerators) - Insertion and final focusing magnets (to control beam optics near targets or collision points) - Corrector magnets (e.g., to correct field distortions produced by persistent magnetization currents in arc magnets) - Detector magnets (embedded in detector arrays surrounding targets or collision points) Bending and Focusing Magnets • Bending and focusing magnets are distributed in a regular lattice of cells around the arcs of large circular accelerators 106.90 m ^ j ~ 14.30 m 14.30 m 14.30 m MBA I MBB MB. ._A. Ii p71 ^M^^;. t " MB. .__i B ^-• • MgAMBA, | MBMBB B , MQ: Lattice Quadrupole MBA: Dipole magnet Type A MO: Landau Octupole MBB: Dipole magnet Type B MQT: Tuning Quadrupole MCS: Local Sextupole corrector MQS: Skew Quadrupole MCDO: Local combined decapole and octupole corrector MSCB: Combined Lattice Sextupole (MS) or skew sextupole (MSS) and Orbit Corrector (MCB) BPM: Beam position monitor Cell of the proposed magnet lattice for the LHC arcs (LHC counts 8 arcs made up of 23 such cells) Bending and Focusing Magnets (Cont.) • These magnets are in large number (e.g., 1232 dipole magnets and 386 quadrupole magnets in LHC), • They must be mass-produced in industry, • They are the most expensive components of the machine.
    [Show full text]
  • Design of the Combined Function Dipole-Quadrupoles (DQS)
    9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML135 DESIGN OF THE COMBINED FUNCTION DIPOLE-QUADRUPOLES(DQS) WITH HIGH GRADIENTS* Zhiliang Ren, Hongliang Xu†, Bo Zhang‡, Lin Wang, Xiangqi Wang, Tianlong He, Chao Chen, NSRL, USTC, Hefei, Anhui 230029, China Abstract few times [3]. The pole shape is designed to reach the required field quality of 5×10-4. The 2D pole profile is Normally, combined function dipole-quadrupoles can be simulated by using POSSION and Radia, while the 3D obtained with the design of tapered dipole or offset model by using Radia and OPERA-3D. quadrupole. However, the tapered dipole design cannot achieve a high gradient field, as it will lead to poor field MAGNET DESIGN quality in the low field area of the magnet bore, and the design of offset quadrupole will increase the magnet size In a conventional approach, the gradient field of DQ can and power consumption. Finally, the dipole-quadrupole be generated by varying the gap along the transverse design developed is in between the offset quadrupole and direction, which also called tapered dipole design. As it is septum quadrupole types. The dimensions of the poles and shown in Fig. 1, the pole of DQ magnet can be regarded as the coils of the low field side have been reduced. The 2D part of the ideal hyperbola. The ideal hyperbola with pole profile is simulated and optimized by using POSSION asymptotes at Y = 0 and X = -B0/G is the pole of a very and Radia, while the 3D model using Radia and OPERA- large quadrupole.
    [Show full text]
  • Lecture Notes For: Accelerator Physics and Technologies for Linear Colliders
    Lecture Notes for: Accelerator Physics and Technologies for Linear Colliders (University of Chicago, Physics 575) ¢¡ ¢¡ February 26 and 28 , 2002 Frank Zimmermann CERN, SL Division 1 Contents 1 Beam-Delivery Overview 3 2 Collimation System 3 2.1 Halo Particles . 3 2.2 Functions of Collimation System . 4 2.3 Collimator Survival . 4 2.4 Muons . 7 2.5 Downstream Sources of Beam Halo . 8 2.6 Collimator Wake Fields . 10 2.7 Collimation Optics . 12 3 Final Focus 14 3.1 Purpose . 14 3.2 Chromatic Correction . 14 3.3 £¥¤ Transformation . 20 3.4 Performance Limitations . 22 3.5 Tolerances . 24 3.6 Final Quadrupole . 26 3.7 Oide Effect . 27 4 Collisions and Luminosity 29 4.1 Luminosity . 29 4.2 Beam-Beam Effects . 29 4.3 Crossing Angle . 31 4.4 Crab Cavity . 33 4.5 IP Orbit Feedback . 35 4.6 Spot Size Tuning . 36 5 Spent Beam 42 2 1 Beam-Delivery Overview The beam delivery system is the part of a linear collider following the main linac. It typically consists of a collimation system, a final focus, and a beam-beam collision point located inside a particle-physics detector. Also the beam exit line required for the disposal of the spent beam is often subsumed under the term ‘beam delivery’. See Fig. 1. In addition, somewhere further upstream, there might be a beam switchyard from which the beams can be sent to several different interaction points, and possibly a bending section (‘big bend’) which provides a crossing angle and changes the direction of the beam line after collimation, so as to prevent the collimation debris from reaching the detector.
    [Show full text]
  • Field Measurement of the Quadrupole Magnet for Csns/Rcs
    5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-TUPRO096 FIELD MEASUREMENT OF THE QUADRUPOLE MAGNET FOR CSNS/RCS L. LI , C. D Deng, W. Kang, S. Li, D. Tang, B. G. Yin, J. X. Zhou, Z. Zhang, H. J. Wang, IHEP, Beijing, China Abstract The quadrupole magnets are being manufactured and Table 1: Main Design Parameters and Specification measured for China Spallation Neutron Source Rapid Magnet RCS- RCS- RCS- RCS- Cycling Synchrotron (CSNS/RCS) since 2012. In order to type QA QB QC QD evaluate the magnet qualities, a dedicated magnetic measurement system has been developed. The main Aperture 206mm 272mm 222mm 253mm quadrupole magnets have been excited with DC current biased 25Hz repetition rate. The measurement of Effe. length 410mm 900mm 450mm 620mm magnetic field was mainly based on integral field and Max. 6.6 5 T/m 6 T/m 6.35T/m harmonics measurements at both static and dynamic gradient T/m conditions. This paper describes the magnet design, the Unallowed - - - - field measurement system and presents the results of the 5×10 4 5×10 4 5×10 4 5×10 4 quadrupole magnet. multipole Allowed - - - - 4×10 4 4×10 4 4×10 4 4×10 4 INTRODUCTION multipole 6×10-4 6×10-4 6×10-4 6×10-4 The China Spallation Neutron Source [1] is located in B6/B2 ,B10/B2 Dongguan city, Guangdong Province, China. The CSNS Lin. accelerator mainly consists of an 80Mev an H-Linac 2% 1.5% 1.5% 1.5% accelerator, a 1.6Gev Rapid Cycling Synchrotron (RCS) deviation and two beam transport lines.
    [Show full text]
  • FS&T Template
    A COMPACT STORAGE RING FOR THE PRODUCTION OF EUV RADIATION R.M. Bergmann, T. Bieri, P. Craievich, Y. Ekinci, T. Garvey, C. Gough, M. Negrazus, L. Rivkin, C. Rosenberg, L. Schulz, T. Schmidt, L. Stingelin, A. Streun, V. Vrankovic. A. Wrulich, A. Zandonella Callegher, R. Zennaro. Paul Scherrer Institut,: 5232 Villigen, Switzerland. We present the design of a compact low emittance synchrotron radiation source which will synchrotron light source for the production of EUV meet the needs of industry for mask inspection. Hereafter, the source will be referred to as COSAMI (Compact radiation for metrology applications in the semiconductor Storage ring for Actinic Mask Inspection). industry. Stable, high brightness EUV light sources are of great potential interest for this industry. The recent II. SOURCE REQUIREMENTS availability of highly reflective mirrors at 13.5 nm As the storage ring (SR) is operated for wavelength makes EUV lithography a strong candidate commercial purposes it is mandatory that it has a very for future generation semiconductor manufacture. Our high reliability. The Swiss Light Source (SLS) at PSI has design is based on a storage ring lattice employing design a typical reliability figure of ~ 99% and we believe that principles similar to those used in the new family of this is sufficient for the semiconductor industry. However, diffraction limited synchrotron radiation sources. The as reliability is of such great importance our SR design will use only well-established accelerator technologies. In 430 MeV storage ring of circumference 25.8 m would addition, as the SR will have a single user (i.e. it is not a have an emittance of ~ 6 nm-rad.
    [Show full text]
  • Magnet Design for the Storage Ring of TURKAY
    Turkish Journal of Physics Turk J Phys (2017) 41: 13 { 19 http://journals.tubitak.gov.tr/physics/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/fiz-1603-12 Magnet design for the storage ring of TURKAY Zafer NERGIZ_ ∗ Department of Physics, Faculty of Arts and Sciences, Ni˘gdeUniversity, Ni˘gde,Turkey Received: 09.03.2016 • Accepted/Published Online: 16.08.2016 • Final Version: 02.03.2017 Abstract:In synchrotron light sources the radiation is emitted from bending magnets and insertion devices (undulators, wigglers) placed on the storage ring by accelerating charged particles radially. The frequencies of produced radiation can range over the entire electromagnetic spectrum and have polarization characteristics. In synchrotron machines, the electron beam is forced to travel on a circular trajectory by the use of bending magnets. Quadrupole magnets are used to focus the beam. In this paper, we present the design studies for bending, quadrupole, and sextupole magnets for the storage ring of the Turkish synchrotron radiation source (TURKAY), which is in the design phase, as one of the subprojects of the Turkish Accelerator Center Project. Key words: TURKAY, bending magnet, quadrupole magnet, sextupole magnet, storage ring 1. Introduction At the beginning of the 1990s work started on building third generation light sources. In these sources, the main radiation sources are insertion devices (undulators and wigglers). Since the radiation generated in synchrotrons can cover the range from infrared to hard X-ray region, they have a wide range of applications with a large user community; thus a strong trend to build many synchrotrons exists around the world.
    [Show full text]
  • Conventional Magnets for Accelerators Lecture 1
    Conventional Magnets for Accelerators Lecture 1 Ben Shepherd Magnetics and Radiation Sources Group ASTeC Daresbury Laboratory [email protected] Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 1 Course Philosophy An overview of magnet technology in particle accelerators, for room temperature, static (dc) electromagnets, and basic concepts on the use of permanent magnets (PMs). Not covered: superconducting magnet technology. Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 2 Contents – lectures 1 and 2 • DC Magnets: design and construction • Introduction • Nomenclature • Dipole, quadrupole and sextupole magnets • ‘Higher order’ magnets • Magnetostatics in free space (no ferromagnetic materials or currents) • Maxwell's 2 magnetostatic equations • Solutions in two dimensions with scalar potential (no currents) • Cylindrical harmonic in two dimensions (trigonometric formulation) • Field lines and potential for dipole, quadrupole, sextupole • Significance of vector potential in 2D Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 3 Contents – lectures 1 and 2 • Introducing ferromagnetic poles • Ideal pole shapes for dipole, quad and sextupole • Field harmonics-symmetry constraints and significance • 'Forbidden' harmonics resulting from assembly asymmetries • The introduction of currents • Ampere-turns in dipole, quad and sextupole • Coil economic optimisation-capital/running costs • Summary of the use of permanent magnets (PMs) • Remnant fields and coercivity
    [Show full text]
  • On Modeling Magnetic Fields on a Sphere with Dipoles and Quadrupoles by DAVID G
    On Modeling Magnetic Fields on a Sphere with DipolesA and Quadrupoles<*Nfc/ JL GEOLOGICAL SURVEY PROFESSIONAL PAPER 1118 On Modeling Magnetic Fields on a Sphere with Dipoles and Quadrupoles By DAVID G. KNAPP GEOLOGICAL SURVEY PROFESSIONAL PAPER 1118 A study of the global geomagnetic field with special emphasis on quadrupoles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Knapp, David Goodwin, 1907- On modeling magnetic fields on a sphere with dipoles and quadrupoles. (Geological Survey Professional Paper 1118) Bibliography: p. 35 1. Magnetism, Terrestrial Mathematical models. 2. Quadrupoles. I. Title. II. Series: United States Geological Survey Professional Paper 1118. QC827.K58 538'.?'ol84 79-4046 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03262-7 CONTENTS Page Page /VOStrHCt ™™-™™™™"™-™™™"™«™™-«—"—————————————— j_ Relations with spherical harmonic analysis—Continued Introduction——————————-—--——-———........—..——....... i Other remarks concerning eccentric dipoles ———— 14 Characteristics of the field of a dipole —————————————— 1 Application to extant models -—————————-——- Multipoles ——————————-—--——--—-——--——-——...._. 2 14 E ccentric-dipole behavior ———————————————• The general quadrupole ——————-———._....................—.— 2 20 Results of calculations --—--—------——-——-—- 21 Some characteristics
    [Show full text]
  • Electromagnets in Synchrotron Design and Fabrication
    3rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Electromagnets in Synchrotron Design and Fabrication Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group ,Magnet section, Institute for Research in Fundamental Sciences ILSF 1 References • S.Fatehi, M.khabazi, “2nd ILSF school on synchrotron radiation and its applications” October2012. • Th.Zickler, CERN Accelerator School , Specialized Course on Magnets, Bruges, Belgium, 16‐25 June 2009. • D. Einfeld, ‘’Magnets’’, CELLS CAS, Frascati, Nov. 2008. • Jack Tanab, “Iron Dominated Electromagnets Design, Fabrication, Assembly and Measurements”, January 6, 2005. • G.E.Fisher,”Iron Dominated Magnets”, Stanford Linear Accelerator Center, 1985. • H.Ghasem, F.Saeidi, first ILSF school on synchrotron radiation and its applications. Sepember 2011. • H. Wiedemann, Particle Accelerator Physics I, Springer, 1999. ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd • K.Wille, The physics of Particle Accelerators, Oxford University, 2000. 3 ILSF-IPM, Sep. 2013 2 OutLine Light sources and magnets Magnet types Dipoles Quadrupoles Sextupoles Combined magnets Design Procedure ILSF Prototype magnets Fabrication Procedure ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep. 2013 3 Light sources and magnets Storage ring Booster LTB BTS Linac Diamond Accelerator Complex ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep. 2013 4 Magnet types Use in medium energy ALBA,TPS, PAL, SLS,… light sources (≈ 3 GEV), magnetic field ≤ 2 T Use in high energy light CERN sources (>3 GEV), magnetic field > 2 T Brazilian light source Rarely used because of high prices, aging & etc ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep.
    [Show full text]