Ph501 Electrodynamics Problem Set 8 Kirk T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Magnetic Measurement Methods
Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It -
Mass Spectrometry: Quadrupole Mass Filter
Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory. -
The Magnetic Moment of a Bar Magnet and the Horizontal Component of the Earth’S Magnetic Field
260 16-1 EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH’S MAGNETIC FIELD I. THEORY The purpose of this experiment is to measure the magnetic moment μ of a bar magnet and the horizontal component BE of the earth's magnetic field. Since there are two unknown quantities, μ and BE, we need two independent equations containing the two unknowns. We will carry out two separate procedures: The first procedure will yield the ratio of the two unknowns; the second will yield the product. We will then solve the two equations simultaneously. The pole strength of a bar magnet may be determined by measuring the force F exerted on one pole of the magnet by an external magnetic field B0. The pole strength is then defined by p = F/B0 Note the similarity between this equation and q = F/E for electric charges. In Experiment 3 we learned that the magnitude of the magnetic field, B, due to a single magnetic pole varies as the inverse square of the distance from the pole. k′ p B = r 2 in which k' is defined to be 10-7 N/A2. Consider a bar magnet with poles a distance 2x apart. Consider also a point P, located a distance r from the center of the magnet, along a straight line which passes from the center of the magnet through the North pole. Assume that r is much larger than x. The resultant magnetic field Bm at P due to the magnet is the vector sum of a field BN directed away from the North pole, and a field BS directed toward the South pole. -
PH585: Magnetic Dipoles and So Forth
PH585: Magnetic dipoles and so forth 1 Magnetic Moments Magnetic moments ~µ are analogous to dipole moments ~p in electrostatics. There are two sorts of magnetic dipoles we will consider: a dipole consisting of two magnetic charges p separated by a distance d (a true dipole), and a current loop of area A (an approximate dipole). N p d -p I S Figure 1: (left) A magnetic dipole, consisting of two magnetic charges p separated by a distance d. The dipole moment is |~µ| = pd. (right) An approximate magnetic dipole, consisting of a loop with current I and area A. The dipole moment is |~µ| = IA. In the case of two separated magnetic charges, the dipole moment is trivially calculated by comparison with an electric dipole – substitute ~µ for ~p and p for q.i In the case of the current loop, a bit more work is required to find the moment. We will come to this shortly, for now we just quote the result ~µ=IA nˆ, where nˆ is a unit vector normal to the surface of the loop. 2 An Electrostatics Refresher In order to appreciate the magnetic dipole, we should remind ourselves first how one arrives at the field for an electric dipole. Recall Maxwell’s first equation (in the absence of polarization density): ρ ∇~ · E~ = (1) r0 If we assume that the fields are static, we can also write: ∂B~ ∇~ × E~ = − (2) ∂t This means, as you discovered in your last homework, that E~ can be written as the gradient of a scalar function ϕ, the electric potential: E~ = −∇~ ϕ (3) This lets us rewrite Eq. -
Units in Electromagnetism (PDF)
Units in electromagnetism Almost all textbooks on electricity and magnetism (including Griffiths’s book) use the same set of units | the so-called rationalized or Giorgi units. These have the advantage of common use. On the other hand there are all sorts of \0"s and \µ0"s to memorize. Could anyone think of a system that doesn't have all this junk to memorize? Yes, Carl Friedrich Gauss could. This problem describes the Gaussian system of units. [In working this problem, keep in mind the distinction between \dimensions" (like length, time, and charge) and \units" (like meters, seconds, and coulombs).] a. In the Gaussian system, the measure of charge is q q~ = p : 4π0 Write down Coulomb's law in the Gaussian system. Show that in this system, the dimensions ofq ~ are [length]3=2[mass]1=2[time]−1: There is no need, in this system, for a unit of charge like the coulomb, which is independent of the units of mass, length, and time. b. The electric field in the Gaussian system is given by F~ E~~ = : q~ How is this measure of electric field (E~~) related to the standard (Giorgi) field (E~ )? What are the dimensions of E~~? c. The magnetic field in the Gaussian system is given by r4π B~~ = B~ : µ0 What are the dimensions of B~~ and how do they compare to the dimensions of E~~? d. In the Giorgi system, the Lorentz force law is F~ = q(E~ + ~v × B~ ): p What is the Lorentz force law expressed in the Gaussian system? Recall that c = 1= 0µ0. -
Magnetic Moment of a Spin, Its Equation of Motion, and Precession B1.1.6
Magnetic Moment of a Spin, Its Equation of UNIT B1.1 Motion, and Precession OVERVIEW The ability to “see” protons using magnetic resonance imaging is predicated on the proton having a mass, a charge, and a nonzero spin. The spin of a particle is analogous to its intrinsic angular momentum. A simple way to explain angular momentum is that when an object rotates (e.g., an ice skater), that action generates an intrinsic angular momentum. If there were no friction in air or of the skates on the ice, the skater would spin forever. This intrinsic angular momentum is, in fact, a vector, not a scalar, and thus spin is also a vector. This intrinsic spin is always present. The direction of a spin vector is usually chosen by the right-hand rule. For example, if the ice skater is spinning from her right to left, then the spin vector is pointing up; the skater is rotating counterclockwise when viewed from the top. A key property determining the motion of a spin in a magnetic field is its magnetic moment. Once this is known, the motion of the magnetic moment and energy of the moment can be calculated. Actually, the spin of a particle with a charge and a mass leads to a magnetic moment. An intuitive way to understand the magnetic moment is to imagine a current loop lying in a plane (see Figure B1.1.1). If the loop has current I and an enclosed area A, then the magnetic moment is simply the product of the current and area (see Equation B1.1.8 in the Technical Discussion), with the direction n^ parallel to the normal direction of the plane. -
Magnetic & Electric Dipole Moments
Axion Academic Training CERN, 1 December 2005 Magnetic & Electric Dipole Moments. Yannis K. Semertzidis Brookhaven National Lab •Muon g-2 experiment d c •EDMs: What do they probe? q •Physics of Hadronic EDMs θ •Probing QCD directly (RHIC), & indirectly (Hadronic EDM) •Experimental Techniques dsr v r r = μr × B + d × E dt Building blocks of matter Force carriers Muons decay to an electron and two neutrinos with a lifetime of 2.2μs (at rest). dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Quantum Mechanical Fluctuations •The electron particle is surrounded by a cloud of virtual particles, a …soup of particles… •The muon, which is ~200 times heavier than the electron, is surrounded by a heavier soup of particles… dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt A circulating particle with r charge e and mass m: μr, L r • Angular momentum e, m L = mvr e r • Magnetic dipole μr = L moment 2m μ = IA dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt For particles with intrinsic angular momentum (spin S): e r μr = g S 2m The anomalous magnetic moment a: g − 2 a = 2 dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt In a magnetic field (B), there is a torque: r τr = μr × B Which causes the spin to precess in the horizontal plane: dsr r =×μr B dt r ds v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Definition of g-Factor magnetic moment g ≡ eh / 2mc angular momentum h From Dirac equation g-2=0 for point-like, spin ½ particles. -
Induced Magnetic Dipole Moment Per Unit Volume [A/M]
Electromagnetism II (spring term 2020) Lecture 7 Microscopic theory of magnetism E Goudzovski [email protected] http://epweb2.ph.bham.ac.uk/user/goudzovski/Y2-EM2 Previous lecture The electric displacement field is defined as Gauss’s law for the electric displacement field: or equivalently For linear, isotropic and homogeneous (e.g. most) dielectrics, Boundary conditions: and , leading to Energy density of the electric field: 1 This lecture Lecture 7: Microscopic theory of magnetism Magnetization and magnetic susceptibility Magnetic properties of atoms; the Bohr magneton Theory of diamagnetism Theory of paramagnetism 2 Types of magnetism In external magnetic field, materials acquire non-zero magnetization , i.e. induced magnetic dipole moment per unit volume [A/m]. For isotropic homogeneous materials, the magnetic susceptibility is defined as Magnetism is linked to the charged constituents in materials: 1) orbital angular momenta of electrons; 2) spin angular momenta of electrons; 3) spin angular momenta of nuclei (a much smaller contribution). Three main types of magnetic materials Diamagnetic: M is opposite to external B; small and negative. B Paramagnetic: M is parallel to external B; small and positive. B Ferromagnetic: very large and non-linear magnetization M. Permanent magnets are magnetized in absence of external B. 3 Magnetic properties of atoms (1) A fundamentally quantum effect: classical physics predicts absence of magnetization phenomena. Ze Bohr’s semiclassical model Angular momentum of the electron: e Magnetic dipole moment of a current loop (lecture 1) (T is the rotation period; S is the area; e>0 is the elementary charge) Gyromagnetic ratio of electron orbital motion: 4 Magnetic properties of atoms (2) Quantization of angular momentum: Quantization of the magnetic moment of electron orbital motion: Bohr magneton: Electron spin (intrinsic angular momentum): The associated magnetic moment is B, therefore the gyromagnetic ratio is twice larger than for orbital motion: e/m. -
Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility
OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring. -
PHYS 352 Electromagnetic Waves
Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics. -
Electrodynamics II: Lecture 9 Multipole Radiation
Electrodynamics II: Lecture 9 Multipole radiation Amol Dighe Sep 14, 2011 Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation ~ rad Potential A! for monochromatic sources We are interested in calculating the radiative components of EM fields and related quantities (like radiated power) for a charge / current distribution that is oscillating with a frequency !. The results for a general time dependence can be obtained by integrating over all frequencies (inverse Fourier transform), of course. We have already seen that it is enough to know about the current distribution (we are interested only in radiative parts), since the charge distribution is related to it by continuity. In such a case, we know that ~ ~0 rad µ Z eikjx−x j A~ (~x) = 0 ~J (~x0) d 3x 0 (1) ! 4π ! j~x − ~x0j ~ Given A!, the rest of the quantities can be easily calculated in terms of it. We shall omit the “rad” label in this lecture, it is assumed to be everywhere except when specified. ~ rad ~ rad B! and E! for monochromatic sources The radiative part of the magnetic field is then ~ ~ ~ B! = r × A! = ik^r × A! (2) Note that here ~r = ~x, to be consistent with standard convention. The radiative part of the electric field can be obtained in this ~ ~ monochromatic case by using r × B! = µ00(−i!)E! (note that there is no current at large r): ic2 E~ = r × B~ = cB~ × ^r (3) ! ! ! ! ~ ~ Thus, E! and B! fields are orthogonal to ^r, orthogonal to each other, and their magnitudes differ simply by a factor of c. -
Conventional Magnets for Accelerators Lecture 1
Conventional Magnets for Accelerators Lecture 1 Ben Shepherd Magnetics and Radiation Sources Group ASTeC Daresbury Laboratory [email protected] Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 1 Course Philosophy An overview of magnet technology in particle accelerators, for room temperature, static (dc) electromagnets, and basic concepts on the use of permanent magnets (PMs). Not covered: superconducting magnet technology. Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 2 Contents – lectures 1 and 2 • DC Magnets: design and construction • Introduction • Nomenclature • Dipole, quadrupole and sextupole magnets • ‘Higher order’ magnets • Magnetostatics in free space (no ferromagnetic materials or currents) • Maxwell's 2 magnetostatic equations • Solutions in two dimensions with scalar potential (no currents) • Cylindrical harmonic in two dimensions (trigonometric formulation) • Field lines and potential for dipole, quadrupole, sextupole • Significance of vector potential in 2D Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 3 Contents – lectures 1 and 2 • Introducing ferromagnetic poles • Ideal pole shapes for dipole, quad and sextupole • Field harmonics-symmetry constraints and significance • 'Forbidden' harmonics resulting from assembly asymmetries • The introduction of currents • Ampere-turns in dipole, quad and sextupole • Coil economic optimisation-capital/running costs • Summary of the use of permanent magnets (PMs) • Remnant fields and coercivity