Iron Dominated Electromagnets Design, Fabrication, Assembly and Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Sextupole Orbit Offsets in the Aps Storage Ring ∗
Proceedings of the 1999 Particle Accelerator Conference, New York, 1999 MEASUREMENT OF SEXTUPOLE ORBIT OFFSETS IN THE APS STORAGE RING ∗ M. Borland, E.A. Crosbie, and N.S. Sereno ANL, Argonne, IL Abstract However, we encountered persistent disagreements be- tween our model of the ring and measurements of the beta Horizontal orbit errors at the sextupoles in the Advanced functions. Hence, a program to measure the beam posi- Photon Source (APS) storage ring can cause changes in tion in sextupoles directly was undertaken. Note that while tune and modulation of the beta functions around the ring. we sometimes speak of measuring sextupole “offsets” or To determine the significance of these effects requires “positions” and of “sextupole miscentering,” we are in fact knowing the orbit relative to the magnetic center of the sex- measuring the position of the beam relative to the sextupole tupoles. The method considered here to determine the hor- center for a particular lattice configuration and steering. izontal beam position in a given sextupole is to measure the tune shift caused by a change in the sextupole strength. The tune shift and a beta function for the same plane uniquely 2 PRINCIPLE OF THE MEASUREMENT determine the horizontal beam position in the sextupole. The measurement relies on the quadrupole field component The beta function at the sextupole was determined by prop- generated by a displaced sextupole magnet. It also makes agating the beta functions measured at nearby quadrupoles use of the existence of individual power supplies for the to the sextupole location. This method was used to measure 280 sextupoles and 400 quadrupoles in the APS. -
Dipole Magnets for the Technological Electron Accelerators
9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPAL043 DIPOLE MAGNETS FOR THE TECHNOLOGICAL ELECTRON ACCELERATORS V. A. Bovda, A. M. Bovda, I. S. Guk, A. N. Dovbnya, A. Yu. Zelinsky, S. G. Kononenko, V. N. Lyashchenko, A. O. Mytsykov, L. V. Onishchenko, National Scientific Centre Kharkiv Institute of Physics and Technology, 61108, Kharkiv, Ukraine Abstract magnets under irradiation was about 38 °С. Whereas magnetic flux of Nd-Fe-B magnets decreased in 0.92 and For a 10-MeV technological accelerator, a dipole mag- 0.717 times for 16 Grad and 160 Grad accordingly, mag- net with a permanent magnetic field was created using the netic performance of Sm-Co magnets remained un- SmCo alloy. The maximum magnetic field in the magnet changed under the same radiation doses. Radiation activ- was 0.3 T. The magnet is designed to measure the energy ity of both Nd-Fe-B and Sm-Co magnets after irradiation of the beam and to adjust the accelerator for a given ener- was not increased keeping critical levels. It makes the Nd- gy. Fe-B and Sm-Co permanent magnets more appropriate for For a linear accelerator with an energy of 23 MeV, a di- accelerator’s applications. The additional advantage of pole magnet based on the Nd-Fe-B alloy was developed Sm-Co magnets is low temperature coefficient of rem- and fabricated. It was designed to rotate the electron beam anence 0.035 (%/°C). at 90 degrees. The magnetic field in the dipole magnet To assess the parameters of dipole magnet, the simula- along the path of the beam was 0.5 T. -
Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility
OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring. -
Study of the Extracted Beam Energy As a Function of Operational Parameters of a Medical Cyclotron
instruments Article Study of the Extracted Beam Energy as a Function of Operational Parameters of a Medical Cyclotron Philipp Häffner 1,*, Carolina Belver Aguilar 1, Saverio Braccini 1 , Paola Scampoli 1,2 and Pierre Alexandre Thonet 3 1 Albert Einstein Center for Fundamental Physics (AEC), Laboratory of High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; [email protected] (C.B.A.); [email protected] (S.B.); [email protected] (P.S.) 2 Department of Physics “Ettore Pancini”, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy 3 CERN, 1211 Geneva, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-316314060 Received: 5 November 2019; Accepted: 3 December 2019; Published: 5 December 2019 Abstract: The medical cyclotron at the Bern University Hospital (Inselspital) is used for both routine 18F production for Positron Emission Tomography (PET) and multidisciplinary research. It provides proton beams of variable intensity at a nominal fixed energy of 18 MeV. Several scientific activities, such as the measurement of nuclear reaction cross-sections or the production of non-conventional radioisotopes for medical applications, require a precise knowledge of the energy of the beam extracted from the accelerator. For this purpose, a study of the beam energy was performed as a function of cyclotron operational parameters, such as the magnetic field in the dipole magnet or the position of the extraction foil. The beam energy was measured at the end of the 6 m long Beam Transfer Line (BTL) by deflecting the accelerated protons by means of a dipole electromagnet and by assessing the deflection angle with a beam profile detector. -
Lecture Notes For: Accelerator Physics and Technologies for Linear Colliders
Lecture Notes for: Accelerator Physics and Technologies for Linear Colliders (University of Chicago, Physics 575) ¢¡ ¢¡ February 26 and 28 , 2002 Frank Zimmermann CERN, SL Division 1 Contents 1 Beam-Delivery Overview 3 2 Collimation System 3 2.1 Halo Particles . 3 2.2 Functions of Collimation System . 4 2.3 Collimator Survival . 4 2.4 Muons . 7 2.5 Downstream Sources of Beam Halo . 8 2.6 Collimator Wake Fields . 10 2.7 Collimation Optics . 12 3 Final Focus 14 3.1 Purpose . 14 3.2 Chromatic Correction . 14 3.3 £¥¤ Transformation . 20 3.4 Performance Limitations . 22 3.5 Tolerances . 24 3.6 Final Quadrupole . 26 3.7 Oide Effect . 27 4 Collisions and Luminosity 29 4.1 Luminosity . 29 4.2 Beam-Beam Effects . 29 4.3 Crossing Angle . 31 4.4 Crab Cavity . 33 4.5 IP Orbit Feedback . 35 4.6 Spot Size Tuning . 36 5 Spent Beam 42 2 1 Beam-Delivery Overview The beam delivery system is the part of a linear collider following the main linac. It typically consists of a collimation system, a final focus, and a beam-beam collision point located inside a particle-physics detector. Also the beam exit line required for the disposal of the spent beam is often subsumed under the term ‘beam delivery’. See Fig. 1. In addition, somewhere further upstream, there might be a beam switchyard from which the beams can be sent to several different interaction points, and possibly a bending section (‘big bend’) which provides a crossing angle and changes the direction of the beam line after collimation, so as to prevent the collimation debris from reaching the detector. -
Synchrotron Radiation Complex ISI-800 V
Synchrotron radiation complex ISI-800 V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak, I. Karnaukhov, A. Shcherbakov, A. Zelinsky To cite this version: V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak, I. Karnaukhov, et al.. Synchrotron radiation complex ISI-800. Journal de Physique IV Proceedings, EDP Sciences, 1994, 04 (C9), pp.C9-341-C9- 348. 10.1051/jp4:1994958. jpa-00253521 HAL Id: jpa-00253521 https://hal.archives-ouvertes.fr/jpa-00253521 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C9, supplkment au Journal de Physique HI, Volume 4, novembre 1994 Synchrotron radiation complex ISI-800 V. Nemoshkalenko, V. Molodkin, A. Shpak, E. Bulyak*, I. Karnaukhov*, A. Shcherbakov* and A. Zelinsky* Institute of Metal Physics, Academy of Science of Ukraine, 252142 Kiev, Ukraine * Kharkov Institute of Physics and Technology, 310108 Kharkov, Ukraine Basis considerations for the choice of a synchrotron light source dedicated for Ukrainian National Synchrotron Centre is presented. Considering experiments and technological processes to be carried out 800 MeV compact four superperiod electron ring of third generation was chosen. The synchrotron light generated by the electron beam with current up to 200 mA and the radiation emittance of 2.7*10-8 m*rad would be utilized by 24 beam lines. -
Cyclotron K-Value: → K Is the Kinetic Energy Reach for Protons from Bending Strength in Non-Relativistic Approximation
1 Cyclotrons - Outline • cyclotron concepts history of the cyclotron, basic concepts and scalings, focusing, classification of cyclotron-like accelerators • medical cyclotrons requirements for medical applications, cyclotron vs. synchrotron, present research: moving organs, contour scanning, cost/size optimization; examples • cyclotrons for research high intensity, varying ions, injection/extraction challenge, existing large cyclotrons, new developments • summary development routes, Pro’s and Con’s of cyclotrons M.Seidel, Cyclotrons - 2 The Classical Cyclotron two capacitive electrodes „Dees“, two gaps per turn internal ion source homogenous B field constant revolution time (for low energy, 훾≈1) powerful concept: simplicity, compactness continuous injection/extraction multiple usage of accelerating voltage M.Seidel, Cyclotrons - 3 some History … first cyclotron: 1931, Berkeley Lawrence & Livingston, 1kV gap-voltage 80keV Protons 27inch Zyklotron Ernest Lawrence, Nobel Prize 1939 "for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements" John Lawrence (center), 1940’ies first medical applications: treating patients with neutrons generated in the 60inch cyclotron M.Seidel, Cyclotrons - 4 classical cyclotron - isochronicity and scalings continuous acceleration revolution time should stay constant, though Ek, R vary magnetic rigidity: orbit radius from isochronicity: deduced scaling of B: thus, to keep the isochronous condition, B must be raised in proportion -
FS&T Template
A COMPACT STORAGE RING FOR THE PRODUCTION OF EUV RADIATION R.M. Bergmann, T. Bieri, P. Craievich, Y. Ekinci, T. Garvey, C. Gough, M. Negrazus, L. Rivkin, C. Rosenberg, L. Schulz, T. Schmidt, L. Stingelin, A. Streun, V. Vrankovic. A. Wrulich, A. Zandonella Callegher, R. Zennaro. Paul Scherrer Institut,: 5232 Villigen, Switzerland. We present the design of a compact low emittance synchrotron radiation source which will synchrotron light source for the production of EUV meet the needs of industry for mask inspection. Hereafter, the source will be referred to as COSAMI (Compact radiation for metrology applications in the semiconductor Storage ring for Actinic Mask Inspection). industry. Stable, high brightness EUV light sources are of great potential interest for this industry. The recent II. SOURCE REQUIREMENTS availability of highly reflective mirrors at 13.5 nm As the storage ring (SR) is operated for wavelength makes EUV lithography a strong candidate commercial purposes it is mandatory that it has a very for future generation semiconductor manufacture. Our high reliability. The Swiss Light Source (SLS) at PSI has design is based on a storage ring lattice employing design a typical reliability figure of ~ 99% and we believe that principles similar to those used in the new family of this is sufficient for the semiconductor industry. However, diffraction limited synchrotron radiation sources. The as reliability is of such great importance our SR design will use only well-established accelerator technologies. In 430 MeV storage ring of circumference 25.8 m would addition, as the SR will have a single user (i.e. it is not a have an emittance of ~ 6 nm-rad. -
Configuration of the Dipole Magnet Power Supplies for the Diamond Booster Synchrotron
Proceedings of EPAC 2002, Paris, France CONFIGURATION OF THE DIPOLE MAGNET POWER SUPPLIES FOR THE DIAMOND BOOSTER SYNCHROTRON N. Marks, S.A. Griffiths, and J.E. Theed CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K. Abstract The synchrotron source, DIAMOND, requires a 3 GeV Table 1: Major Booster Dipole Parameters fast cycling booster synchrotron to inject beam into the Injection Energy 100 MeV main storage ring. A repetition rate of between 3 and 5 Hz Extraction Energy 3 GeV is required for continuous filling, together with the need Number of dipoles 36 for discontinuous operation for ‘top-up’ injection. The Magnetic length 2.17 m paper presents the outline parameters for the booster Dipole field at 3GeV 0.8 T dipole magnets and give details of the required power supply ratings. The suitability of present-day switch-mode Total good field aperture (h x v) 35 mm x 23 mm circuit designs is examined; this assessment includes the Total gap 31 mm Total Amp-turns at 3 GeV 20,330 At results of a survey of the ratings of commercially 2 available power switching solid-state devices. The RMS current density in coil 4 A/mm 2 proposed solution for the DIAMOND Booster magnets is Total conductor cross section 3122 mm presented, with details of how the power converter design Total resistive loss-all dipoles 188 kW influences the dipole coil configuration. Total stored energy at 3 GeV 73.3 kJ Dipole configuration ‘H’ magnet, 1 INTRODUCTION parallel ends The technical design for the new 3 GeV synchrotron radiation source DIAMOND has been developing for over a decade, culminating in the recent production of a full 3 THE POWER SUPPLY DESIGN design report by the accelerator design team at the Daresbury Laboratory [1]. -
Magnet Design for the Storage Ring of TURKAY
Turkish Journal of Physics Turk J Phys (2017) 41: 13 { 19 http://journals.tubitak.gov.tr/physics/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/fiz-1603-12 Magnet design for the storage ring of TURKAY Zafer NERGIZ_ ∗ Department of Physics, Faculty of Arts and Sciences, Ni˘gdeUniversity, Ni˘gde,Turkey Received: 09.03.2016 • Accepted/Published Online: 16.08.2016 • Final Version: 02.03.2017 Abstract:In synchrotron light sources the radiation is emitted from bending magnets and insertion devices (undulators, wigglers) placed on the storage ring by accelerating charged particles radially. The frequencies of produced radiation can range over the entire electromagnetic spectrum and have polarization characteristics. In synchrotron machines, the electron beam is forced to travel on a circular trajectory by the use of bending magnets. Quadrupole magnets are used to focus the beam. In this paper, we present the design studies for bending, quadrupole, and sextupole magnets for the storage ring of the Turkish synchrotron radiation source (TURKAY), which is in the design phase, as one of the subprojects of the Turkish Accelerator Center Project. Key words: TURKAY, bending magnet, quadrupole magnet, sextupole magnet, storage ring 1. Introduction At the beginning of the 1990s work started on building third generation light sources. In these sources, the main radiation sources are insertion devices (undulators and wigglers). Since the radiation generated in synchrotrons can cover the range from infrared to hard X-ray region, they have a wide range of applications with a large user community; thus a strong trend to build many synchrotrons exists around the world. -
Electromagnets in Synchrotron Design and Fabrication
3rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Electromagnets in Synchrotron Design and Fabrication Prepared by: Farhad Saeidi, Jafar Dehghani Mechanic Group ,Magnet section, Institute for Research in Fundamental Sciences ILSF 1 References • S.Fatehi, M.khabazi, “2nd ILSF school on synchrotron radiation and its applications” October2012. • Th.Zickler, CERN Accelerator School , Specialized Course on Magnets, Bruges, Belgium, 16‐25 June 2009. • D. Einfeld, ‘’Magnets’’, CELLS CAS, Frascati, Nov. 2008. • Jack Tanab, “Iron Dominated Electromagnets Design, Fabrication, Assembly and Measurements”, January 6, 2005. • G.E.Fisher,”Iron Dominated Magnets”, Stanford Linear Accelerator Center, 1985. • H.Ghasem, F.Saeidi, first ILSF school on synchrotron radiation and its applications. Sepember 2011. • H. Wiedemann, Particle Accelerator Physics I, Springer, 1999. ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd • K.Wille, The physics of Particle Accelerators, Oxford University, 2000. 3 ILSF-IPM, Sep. 2013 2 OutLine Light sources and magnets Magnet types Dipoles Quadrupoles Sextupoles Combined magnets Design Procedure ILSF Prototype magnets Fabrication Procedure ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep. 2013 3 Light sources and magnets Storage ring Booster LTB BTS Linac Diamond Accelerator Complex ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep. 2013 4 Magnet types Use in medium energy ALBA,TPS, PAL, SLS,… light sources (≈ 3 GEV), magnetic field ≤ 2 T Use in high energy light CERN sources (>3 GEV), magnetic field > 2 T Brazilian light source Rarely used because of high prices, aging & etc ILSF School on Synchrotron Radiation and Its Applications Its and Radiation Synchrotron on School ILSF rd 3 ILSF-IPM, Sep. -
Accelerator Physics and Technology of the Lhc
ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC R.Schmidt CERN, 1211 Geneva 23, Switzerland Abstract The Large Hadron Collider, to be installed in the 26 km long LEP tunnel, will collide two counter-rotating proton beams at an energy of 7 TeV per beam. ¢¡ ¤ ¥ £ The machine is designed to achieve a luminosity exceeding 10 cm £ s . High field dipole magnets operating at 8.36 T in 1.9 K superfluid Helium will deflect the beams. The construction of the LHC superconducting magnet sys- tem is a significant technological challenge. A large variety of magnets are required to keep the particle trajectories stable. The quality of the magnetic ¦ field is essential to keep the particles on stable trajectories for about 10 turns. The magnetic field calculations discussed in this workshop are a primary tool for the design of magnets with low field errors. In this paper an overview of the LHC accelerator is given, with special emphasis on requirements to the magnet system. This contribution has been written for the participants of this workshop (physicists and engineers who are interested in understanding some of the LHC challenges, in particular to the magnet system) The paper is not meant as a status report, which has been published elsewhere [1] [2]. The conceptual design of the LHC has been published in [3]. 1 Introduction The motivation to construct an accelerator such as the LHC comes from fundamental questions in Particle Physics [4]. The first problem of Particle Physics is the Problem of Mass: is there an elementary Higgs boson. The primary task of the LHC is to make an initial exploration of the 1 TeV range.