Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases Author Holmes, Roger S, Glenn, Jeremy P, VandeBerg, John L, Cox, Laura A Published 2009 Journal Title Journal of Medical Primatology DOI https://doi.org/10.1111/j.1600-0684.2008.00315.x Copyright Statement © 2009 John Wiley & Sons A/S. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher.The definitive version is available at www.interscience.wiley.com Downloaded from http://hdl.handle.net/10072/29362 Griffith Research Online https://research-repository.griffith.edu.au Baboon Carboxylesterases 1 and 2: Sequences, Structures and Phylogenetic Relationships with Human and other Primate Carboxylesterases Roger S. Holmes 1,2,3 , Jeremy P. Glenn 1, John L. VandeBerg 1,2 , Laura A. Cox 1,2,4 1. Department of Genetics and 2. Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, TX, USA, and 3. School of Biomolecular and Physical Sciences, Griffith University, Nathan. Queensland, Australia 4. Corresponding Author: Laura A. Cox, Ph.D. Department of Genetics Southwest National Primate Research Center Southwest Foundation for Biomedical Research San Antonio, TX, USA 78227 Email:
[email protected] Phone: 210-258-9687 Fax: 210-258-9600 Keywords: cDNA sequence; amino acid sequence; 3-D structure Running Head: Carboxylesterases: sequences and phylogeny Published in Journal of Medical Primatology (2009) 38: 27-38. Abstract Background Carboxylesterase (CES) is predominantly responsible for the detoxification of a wide range of drugs and narcotics, and catalyze several reactions in cholesterol and fatty acid metabolism.