<<

Global

Interpreting Digital Images

Teacher’s Guide

July, 2004 Edition

Created by John Pickle and Jacqueline Kirtley Contents Introduction...... 3 Appendix: Description of Activities ...... 4 Settings ...... 30 Activity 1: Three-Color Light ...... 7 To set both colors and Activity 2: Pictures and Colors ..... 12 screen size: ...... 30 Activity 3: Exploring & MixingColor ...... 30 Measuring Light ...... 17 TriColor ...... 31 Activity 4: Displaying Game_TriColor ...... 31 Invisible Light ...... 19 Report_TriColor ...... 32 Activity 5: Using Analysis Tools .... 23 PixelView ...... 32 Activity 6: Satellite Analysis ...... 27 ColorPicture ...... 33 MergePictures ...... 34 SplitColors ...... 34 ImageAnalysis ...... 36 FalseColor ...... 39 SurfaceType ...... 40 LandSatAnalysis ...... 41 VegetationAnalysis ...... 45 Global Interpreting Digital Images—TeacherAcknowledgements guide ...... 1 47 Satellite image courtesy of the United States Geological (USGS) from their web site: http://edcwww.cr.usgs.gov/earthshots/slow/tableofcontents

Interpreting Digital Images (IDI) is a part of the Global Systems Science (GSS) curriculum materials. http://lhs.berkeley.edu/GSS/

Copyright 2003 by the Regents of the University of California. All rights reserved.

IDI is a joint project of the Museum of Science, Boston and Lawrence Hall of Science

2 Global Systems Science Interpreting Digital Images—Teacher Guide Introduction ThisInterpretingDigitalImages(IDI)teacherguidehasmaterialsforteachers andanswerstoquestionsinthestudentbooklet.Thestudentbookletisavailable asaseparatedocument.Eachactivityisdesignedtotakeoneclassperiodof45 minutes.However,someoftheconceptsarecomplicated.Extraclasseswould providegreaterfamiliaritywiththefundamentalconcepts.Therearesuggested extensionsforadditionalclasses. Goals Apictureisworthathousandwords—andamilliondatapointsifoneknows howtomanipulatetheimage.ThegoalsofIDIaretoexploreconceptsand developskillsinanalyzingawiderangeofdigitalimages.ThesixactivitiesinIDI aredesignedtoisolateandthenintegratekeyconceptsandskillsinorderto learntomanipulate,analyze,andinterpretthedatadisplayedindigitalimages. Softwareprogramsandhands-onactivitieshavebeendesignedtodevelopconcrete understandingofcolor,light,andimagery.IDIsupportsscientificexplorations relatedtotheGlobalSystemsSciencehighschoolcurriculum(http:// lhs.berkeley.edu/gss). Wearefirmlyentrenchedinaneraofthatisgeneratinghuge volumesofdatathatrequirerapidandthoroughprocessingofdigitalimagery. Forexample,earth-orbitingsatelliteshavedramaticallyexpandedourobservations andunderstandingofourever-changingplanet.Satelliteimageryisoneofthe mostpowerfultoolsavailabletoglobalsystemswhoarestrivingto understandEarth’schangingandtheconsequencesofland-usepolicies andpractices.Thevisualizationandanalysistoolsprovidedmaybeappliedtoa widearrayofdigitalimageryandgraphicaldataavailableeitherontheInternet orcollectedwithacamera. How to Use These Materials Thesixactivitiesmaybegroupedintothreeunits: Unit1—Explorecriticalconceptsincolor,imagery,andlight; Unit2—Developskillsinmanipulatingandanalyzingsatelliteimagery;and Unit3—Applytheconceptsandskillstointerpretingsatelliteimagery. TheappendixcontainsvaluabledetailsonhowtheIDIsoftwaremodules work,andisinessenceatechnicalmanualforthesoftware.

See the flow diagram illustrating the recommended sequence of the software components and the table summarizing each program that follow.

Global Systems Science Interpreting Digital Images—Teacher guide 3 Description of Activities

1)Three-ColorLightexploreshowdisplaymillionsofdifferentcolors withcombinationsofjustthreecolors:red,greenandblue.Thisconceptis criticaltograsp.Mostpeople’sunderstandingofcolorscomesfromworking withpaints,andtheyconfusemixingpaintswithmixinglight. KeySoftware:TriColor,Game_TriColor AuxiliarySoftware:MixingColor,Report_TriColor 2)PicturesandColors illustrateshowacolorpictureonascreenis madeupoftinypixels,eachofwhichhascolordefinedbyacombinationof thethreeprimarycolorsoflight.Usingfamiliarimages,studentsseehowthe samepicturewouldlookwithafewverylargepixelsorwithalargenumber ofverysmallpixels.Thisleadstotheideaofimageresolution.Theyalso manipulateimagestoseparateandchangethecontributionsofeachcolor componentwithinthepicture.Theylearnthatanimagehastwoseparate aspects:measuredintensitiesoflight(sensordata)andthedisplayofthose measurementsonacomputerscreen. KeySoftware:PixelView,ColorPicture AuxiliarySoftware:SplitColors,ImageAnalysis,MergePictures 3)ExploringandMeasuringLightletsstudentsusesimpleinstrumentstomeasure reflectance,absorption,transmission,andemissionoflightfromvarious objectsavailableintheclassroomoraroundtheschool.Studentsmeasure thebehaviorofspecificwavelengthsoflight(visibleandinfrared)with inexpensive,robusttools. 4)DisplayingInvisibleLightrevealshowthreesets ofsatellitemeasurements(sensordata)are displayedonacomputermonitor.Studentslearn themeaningoffalsecolor,andhowimagesmay 6)DigitalImageAnalysis providesanopportunity beinterpretedbyapplyingtheknowledgeof touseadvancedvisualizationandanalysistools light,colors,andpixels.Theyidentifydifferent onawidearrayofdigitalimages,includingtime typesoflandsurfacecovers(e.g.water, seriesofLandsatimagesoverthesamelocation vegetation,exposedrockandsoil,andsnow) toexplorehowtheEarth’ssurfacerespondsto usingtheintensitiesofreflectedinfraredand naturalorhuman-inducedchanges.Uptothis visibleredandgreenlightasmeasuredby point,studentsmanuallydidatleastonestep Landsatsatellites. ofacalculationsotheycouldunderstandthe KeySoftware:FalseColor techniques.Inthissetofsoftware,toolsare 5)UsingAnalysisTools introducesthreesatellite automated,usingthefullpowerofthecomputer, analysistools.The pixeltooldisplaysthe toletstudentsconcentrateonexploringthe intensityofred,green,andbluelightfora informationindigitalimages.Automatedtools selectedpixel.The linetoolhelpstomeasure includegraphingofdata;togglingbetween thelengthofselectedfeatures.Thevisualization visualizations;location/position,distanceand toolquicklyshowsthecontributionofeachcolor areacalculations;andpixel,line,andareatools. intheimage. Byusingthesetools,studentsmayexplore KeySoftware:SurfaceType environmentalissuesscientificallyand independently. KeySoftware:ImageAnalysis,VegetationAnalysis AuxiliarySoftware:LandSatAnalysis

4 Global Systems Science Interpreting Digital Images—Teacher Guide Recommended Sequence for Software within the Three Units

An aerial photograph of Boston, MA. Image courtesy of http://ortho.mit.edu/. The Museum of Science straddles the Charles River at the top center of the photograph.

Global Systems Science Interpreting Digital Images—Teacher guide 5 Software Summary Chart

Software Summary MixingColor Comparehowcolorsmixusingpigmentsandlight

TriColor Explorethecolorscreatedbymixingvaryingintensitiesofred, green,andbluelight

Game_TriColor Testyourabilitytoidentifytheintensitiesofthered,green,and bluecomponentsofacoloronthecomputerscreen.Colorsare createdbyplayinganotherpersonoragainstthecomputer. Report_TriColor Areportonhowwellstudentsidentifytheintensitiesorred,green, andbluefor10randomlygeneratedcolorsisgeneratedon- screen,inatextfile,andprintedforteacherorstudentuse. PixelView Changethesizeofpixelsforanydigitalpicture(jpeg,gif,tiff,or pict)—calledpixelation

ColorPicture Separatethered,green,andbluecolorcomponentsofanydigital picture(jpeg,gif,tiff,orpict)

SplitColors Advancedmanipulationofthered,green,andbluecolor componentsofanydigitalpicture(jpeg,gif,tiff,orpict)

ImageAnalysis Usingadvancedtools,analyzethespatialandcolorinformation withinanydigitalimage(jpeg,gif,tiff,orpict)

MergePictures Combinetime-lapsepicturesontooneimage

FalseColor SimilartoColorPicture,manipulatethecolordisplaycomponentsof aLandsatimage

SurfaceType Usingsimplifiedtools,analyzethespatialandspectralinformation withinastandardcolorcompositeLandsatimage

VegetationAnalysis Usingadvancedtools,studythespatialandspectralinformation withinatime-seriesofLandsatimages

LandSatAnalysis Usingadvancedtools,analyzethespatialandspectralinformation withinastandardcolorcompositeLandsatimage

6 Global Systems Science Interpreting Digital Images—Teacher Guide Activity 1: Three-Color Light Purpose • Tolearnthatred,green,andbluearetheprimarycolorsoflight fromwhichyoucanmakeamyriadofcolors. • TounderstandhowcomputersandTVsdisplaycolor. Why? Most people think of color in terms of pigments, and they need the opportunity and the time to explore how colors are made with light. Materials • Computerlab(informofsinglecomputerwithvideoprojectoror largeTVmonitor,computerforeverypairofstudents,etc.) • TriColorandGame_TriColorsoftware(Extension:MixingColorand Report_TriColorsoftware;Report_TriColormaybeusedasan assessmenttool.) • Worksheets: TriColorCreationChart,TriColorPredictionChart, andTriColor ReferenceChart • Optional:Coloredpencilsorpainttocolorin TriColorReference Chart Preparation 1.Loadsoftwareapplicationsontoallcomputersand/orserverthat willbeusedduringclass.Seeappendixtocheckrequiredcomputer settings. 2.Photocopyworksheetsforeachstudent. Student Investigation Therearefourstepswithinthisactivity: 1.Usingthe TriColorCreationChart and TriColorsoftware,students findtheintensitiesofeachofthethreeprimarycolors(red,green, andblue)neededtocreatespecificnewcolorsonthecomputer screen. 2.TheTriColorPredictionchartturnsthingsaround:studentsaregiven primarycolorintensitiesandaskedwhatcolorshouldtheysee. 3.Studentsindependentlyexploreandidentifyintensitiesofred,green, andblueincolorsusingGame_TriColor. 4.StudentscompletetheTri-ColorReferenceChartasatooltobeused throughouttheseriesofIDIactivities.

Global Systems Science Interpreting Digital Images—Teacher guide 7 Tri-Color Creation Chart

Guess the color intensity combination to create the following colors:

Red Green Blue What would you Intensity Intensity Intensity call this color? Pure Red 100 0 0 Red Pure Green 0 100 0 Light green Pure Blue 0 0 100 Bright Blue White 100 100 100 White Black 0 0 0 Black Yellow 100 100 0 Yellow Violet 50 25 75 Purple Orange 100 50 0 Orange Pink 100 80 80 Pink

Tri-Color Prediction Chart

Red Green Blue What color do you What color do you Intensity Intensity Intensity guess this is? see with TriColor? Value Value Value 100 100 0 Yellow 0 100 100 Cyan 100 0 100 Magenta 75 75 75 Light Grey 50 50 50 Medium Grey 25 25 25 Dark Grey 100 50 50 Deep Pink 100 50 0 Orange 100 0 50 Bright Raspberry* 50 100 50 Yellow Green 0 100 50 Lime Green 0 50 100 Electric Blue 75 50 25 Light Chocolate Brown

*Naming colors often becomes very subjective, as you can see with our attempts at conveying the colors we see on our computer screens.

8 Global Systems Science Interpreting Digital Images—Teacher Guide Tri-Color Reference Chart Usedatathatyou’vealreadycollectedaswellasbothsoftwareprograms (TriColorandGame_TriColor)tofillthecolorintensityvaluesonthischart.

Color Red Green Blue Intensity Intensity Intensity Value Value Value Black 000 White 100 100 100 Red 100 0 0 Yellow 100 100 0 Green 0 100 0 Cyan* 0 100 100 Blue 0 0 100 Magenta* 100 0 100 Orange 100 50 0 Purple 50 25 75 Brown 75 50 25 Pink 100 80 80 LightGray 75 75 75 MediumGray 50 50 50 DarkGray 25 25 25

* Students may be unfamiliar with these standard names. Provide definition during activity. Background ColorinComputerImages Extensions Computersuseintensitiesofthecolorsred, TestingStudents’ColorSensitivity green,andbluetocreateamyriadofdifferentcolors Ifyourcomputercanbesettodisplaymillionsof onourmonitors.Throughoutthisactivity,students colors,thenyoumighttrythefollowingexperiments usepercentagesforeachprimarycolorintensity, withyourstudentstoexplorehumanperceptionof rangedonascaleof0to100percent.However, color.Startingatblack(RGB=0,0,0),incrementally mostdigitalimagesuseabinaryscalewith28levels. changeonecoloratatimeandstopwhentheclass Insteadof101possibleintensityvalues,thereare seesanoticeablechangeincolor.Comparethe 28,or256,possibleintensityvaluesforeachcolor. intensityvaluesforeachcolor.Ifyourcomputer Theseimagescandisplayover16.8milliondifferent terminalproducesanequalphysicalpowerof colors. illuminationforeachcolorcomponent(mostCRTand ColorSpace activematrixLCDscreensdo),youshouldnoticea TheRGB(red,green,blue)schemeisnotthe brightness/colorchangequickestforthegreenchannel, onlyscheme(called colorspace)incommonuse, followedbyred,andleastnoticeablearechangesin thoughitistheoneusedincomputerdisplaysand blue.ComparethecolorsproducedbyRGB=(10,0, mostdigitalcamerasandcomputerscanners.Color 0),(0,10,0),and(0,0,10).Doallthreecolorshave spacesareanalogoustocoordinatesystemsfor equallynoticeableshadesofthecorrespondingprimary maps.Therearedifferentmapprojectionsdesigned color?Notethatthefinalcolorsyouseeonyour forspecificfunctions,andnosingleprojectionfills computerare devicedependent .Manufacturersof alloftheneedsofcartographers.Similarly,one monitorsandtelevisionscreensdonotproducea colorspacedoesnotmeetalloftheneedsofusers universalstandardoutputofcolorsforthesameRGB ofcolor. values.

Global Systems Science Interpreting Digital Images—Teacher guide 9 Next,tryasimilarexperimentbutstartingatmaximumintensityofacolor (forexample,RGB=100,0,0forred).Incrementallydecreasetheredintensity valuetoseeifstudentsfinditeasiertoseecolorchangesinred,green,orblue. Humaneyesaresensitivetosubtlechangesinblue,despitebluenotappearingas brightasgreenorred. Ifyoudotheseactivities,theintensityofbackgroundlightisveryimportant. Thebrighterthebackground,thelesssensitiveyoureyeswillbetochangesin computerdisplaycolors.Experimentwiththeroomdarkenedandwithallofthe lightsturnedontoexaminetheperceivedchangesincolor.Therearemany experimentsthatexamineourperceptionofcolorwhentheobjectissurrounded byvariouscoloredbackgrounds.

NamingColors Usingmail-orderclothingcatalogs,suchasLandsEnd,gothroughthepictures anddescriptions/namesofcolors,trytomatchthecolorswiththoseusingthe TriColorapplication.Recordtheamountofred,green,andblueusedtomatchthe computercolorwiththecatalogpicture.Selectaparticularcolor,saygreen,and examinehow“sagegreen”differsfrom“kellygreen”intermsofintensitiesof red,green,andblue.Ifyouhavecatalogsfromseveralclothingmanufacturers, findpicturesofthesamecolor,suchas“sagegreen”toseehowthecolorsactually differfromeachother.

Hands-OnColor Exploretheadditiveandsubtractive colorworldsbyusingfooddyes,clear containersthatcanstack(suchasapetri dishwithitscap),anoverheadprojector, andaslideprojectorwithcoloredslides(or DefinitionsofOtherColorTerms asecondoverhead).Flashlightsdonotwork Tint:inpigmentmixing(subtractive),colors aswellsincetheintensityisnotconstant achievedbytheadditionofwhite. acrossthebeamoflight. Shade:inpigmentmixing(subtractive),colors Makeseparatecontainersofred, achievedbytheadditionofblack. yellow,green,andblue.Darkentheroom, Hue:usedincertaincolorspacesthatplace3color andplacethecontainersontheoverhead componentsaroundacircle,eachseparatedfrom projector.Toillustratethesubtractivecolor thenextby120 °.Commonly,the3color process,stackthecontainersontopofeach componentsarered(locatedat0 °),green other.Eachcontainerremovesallcolor (locatedat120°),andblue(locatedat240°). exceptthecoloristransmits.Todemonstrate Saturation:thistermdescribesthecolorintensity withthe additivecolorprocess,youneed or“colorfulness”.Whensaturationis0,thecolor multiplelightsourcesandbeamtheseparate iscolorless(gray),butatmaximumvalue,the colorsontoawhitesurface.Whenthecolors coloris“saturated”fortheremainingtwocolor intersect,theadditivecolorisvisible.If componentsofthecolorspace. youuseoverheads,makeacardboardcutout Value:describesthecolorbrightnessorluminance. thesizeofasinglecontainersoonlythecolor Azerovaluemeansthereisnobrightnessand isprojectedandnotthesurroundingwhite thecolorappearsblack.Atmaximumvalue,the light. colorisatitsbrightest. Lightness: issimilartovalue,exceptthatat maximumlightness,theresultingcoloriswhite. Maximumcolorbrightnessoccursathalfthe maximumpossiblelightness.

10 Global Systems Science Interpreting Digital Images—Teacher Guide Background Reading Materials COLORCUBEwebsitehasanexcellentmodelforrepresentingcolor($30)that canbeusedinclass.Italsohasmanyarticlesaboutofcolorinlight andpigments. http://www.colorcube.com/articles/articles.htm Formoreinformationoncolorspaces,see: http://developer.apple.com/techpubs/mac/ACI/ACI-48.htmland http://www.inforamp.net/~poynton/ColorFAQ.html

Howaneye“sees”color?http://www.howstuffworks.com/eye.htm Basicpropertiesoftheelectromagneticspectrum. http://imagers.gsfc.nasa.gov/ems/visible.htmland http://www.howstuffworks.com/light.htm HistoryofCathodeRayTubes(CRTs)andhowprimarycolorschemeswerechosen. http://inventors.about.com/library/inventors/bltelevision.htm

Dallas, Texas 1974

Dallas, These images show the Dallas - Fort Worth metropolis, in Texas northeast Texas. This city has grown significantly in 1989 recent decades, from 2,378,000 in 1970 to 3,776,000 by 1988. These images show the urban/suburban areas expanding into arable land in the countryside.

Satelliteimages LM1029037007407190(Landsat1MSS,12March1974) LM5027037008908190(Landsat5MSS,22March1989)

Global Systems Science Interpreting Digital Images—Teacher guide 11 Activity 2: Pictures and Colors

Purpose • Tolearnaboutpixelsandresolutionincomputerimages. • Tounderstandthatanimagehastwoaspects:themeasurements ofcolor/lightintensitiesandthedisplayofthosemeasurements. • Practiceseparatingtheprimarycolorsinanimagetostudyoneat atime. • Tolearnhowatmosphericparticlesaffectlightintheatmosphere. Why? Eventhoughwearebombardedwithimageseachday,mostpeople arenotfamiliarwiththeabstractconceptsofpixelsandthetwoaspects ofanimage.Oncethesearefamiliar,manipulatingimagesbecomes easier. Materials • Computerlab • Paperandpencilorwordprocessorandprinterforanswering discussionquestions. • PixelViewandColorPicturesoftwareprograms • DigitalPictures:Mystery_##.jpg(picturesofunusualsubjects) ColorCircles.jpg;MOSBuilding.jpg;AllSky.jpg(courtesyofChuck Wilcox,MuseumofScience,Boston,MA);Sunset.jpeg Preparation 1.Loadsoftwareapplicationsandpicturesontoallcomputersand/or serverthatwillbeusedduringclass.SeeAppendixtocheck requiredcomputersettings. 2.Photocopyworksheetsforeachstudent. Prerequisiteforthisactivity: studentsshouldbefamiliarwith theconceptofelectromagneticspectrumandterms usedtodescribethespectrum,suchaswavelength andfrequency.Thisactivitywillfocusonthe energiesofthevisiblepartoftheelectromagnetic spectrumandwithhowallofthevisiblecolorscan becreatedbyacombinationofthreecolors:red, green,andblue. Makesurethatyourstudentsunderstandthat picturesinTVsandcomputerdisplaysaremadeup

12 Global Systems Science Interpreting Digital Images—Teacher Guide Student Investigation oftiny“pictureelements”call pixels.Explainthatthe largecolorpanelscreatedinthefirstactivityusingboth the TriColorand Game_Tricolorsoftwareprograms representedalargepixelofasinglecolor.Itwaslargeso thecolorcouldbeseeneasily.Mostcomputermonitors andtelevisionsscreenshavesuchsmallpixels,wecannot seethemwithoutamagnifyingglass.Eachtinypixelof thecomputerscreenismadeupofcloselypackeddotsor linesofred,green,andblue.Becausethesearesotiny andcloselyspaced,oureyesandbrainprocessthethree colorsasone.Thecomputercontrolstheintensitiesof eachofthesetinysub-elements,creatingeachpixel’s color.Ifyouhaveenoughmagnifyingglassesavailable, takealookatthecomputerscreensandanyothercolor displayscreensavailableinyourclassroomorschool.There isawidevarietyoftechnologyusedtomakecomputer The yellow rubber duck with the red, green, screens,rangingfromcathoderaytubes(similartothat and blue intensities displayed differently on oftelevisions)toliquidcrystaldisplays(LCDs). the computer screen.

Question1.Howdoestheresolutionofanimage affectwhatyoucansee?Whywouldyouneed Question2.Whencouldyouidentifyanimagewith morepixelstoidentifyanimage? largepixels?Howdoesresolutionaffect interpretingsatelliteimages? A: Youcanseegreaterdetailwithhigherresolu- tionduetoagreaternumberofsmallerpixels.A A: Easilyidentifiedobjectsaregenerallyfamiliar familiarimageneedsfewerdetailstomakea andareverylargerelativetothepixelsize.If correctidentification.Ifanimageisnotfamiliar, featuresofinterestaresmallerthanthepixel moredetailsareneededtoidentifyanimage. size,theywillnotbevisibleintheimage.

2x2 pixel Color of a Pixel Question3 .Comparethe resolution averagesfromthesecond Pixel Red Green Blue charttothevaluesforthe Intensity Intensity Intensity UpperLeftpixelfromthe Value Value Value firstchart.Howarethey Upper Left (UL) 13 25 50 alike?Whatdoyouexpect Upper Right (UR) 22 45 75 wouldbeaverageintensity Lower Left (LL) 55 45 60 valuesforthepixelsinthis sameregionifthe Lower Right (LR) 75 30 40 4x4 pixel resolutionis8x8? resolution Pixel Red Green Blue A: Theaveragesinthe Intensity Intensity Intensity secondchartmatchthe Value Value Value coloroftheULpixelinthe UL – 1 10 26 45 firstchart.Thesame UL – 2 15 20 55 shouldhappenforthe8x8 UL – 3 20 22 47 resolutionandUL-1pixel. Watchfordifferences UL – 4 73253 causedbyrounding. Average for each: 13 25 50

Global Systems Science Interpreting Digital Images—Teacher guide 13 Question4 .Describethecolorsyouseeinthis picture.Whatcoloristhecircleatthetop?On theleft?Ontheright?Whatothercolorsdoyou seeinthepicture? Question5.ChangethecombinationsofPictureand ComputerDisplaycolors.Whathappenstothe circleatthetop?Canyoumakethepicturehave onlyoneyellowcircle?

A: Thesevencolorsshiftaroundtheimageasthepictureandcomputer displaycolorsarechanged.Tohaveoneyellowcircle,set: Greenpicturecolor↔Redcomputercolor or Redpicturecolor↔Greencomputercolor Redpicturecolor↔Redcomputercolor Nopicturecolor↔Bluecomputercolor Greenpicturecolor↔Greencomputercolor Nopicturecolor↔Bluecomputercolor Andthereisasimilarsetupwithblue.

Question6.Whatwouldthispicturelooklikeifwewereblindto ALLcolorsexceptred—thatisifwecouldseeONLYredlight? Howwouldtheimagelookdifferentinredthanwithallcolors? Moveyourmouseoverthepicturetoseetheredintensity valuesofpixelsthroughouttheimage.

A: Theskywouldbedarksincetheredintensitiesarebelow20%. Thebrickwouldbebrightsincetheredintensitiesaregreater than75%.

Question7.Changetheviewofthispicturesothat Question9.Whenallofthecomputerdisplaycolors youcanonlyseetheredintensityvaluesofthe showtheredpicturecolor,whydoestheimage imagefile.Todothis,setallthreePictureColor appearblackandwhite?Ifyoureyeswereonly choicesto‘Red’.Whatareaslookbrightinred abletoseered,doyouthinkthatiswhatthe light?Whichareaslookdark? worldwouldlooklike?

A: Whiterepresentsthemaximumintensity,black A: Sincetheintensitiesofredrangefrom0to nointensity,andgraysareintermediatevaluesof 100%,theimagewillrangefromblacktograyto redintensity.Nowtheskyisdarkwithwispsof white.Ifyoucouldonlyseered,itwouldprobably cloudssincethewhitecloudscontainahigh belikeseeingtheworldinblackandwhitesince intensityofred(aswellasgreenandblue).The colorswouldhavelittlemeaning. brickisalightgrayandthetreesaredarkgray. Theredshirtonthemaninthemiddleofthe Question10.Whichofthethree-colorcomponents pictureisnownoticeablybright. (red,green,orblue)isdominantinthesky? Whichcolorcontributestheleastintensityto Question8.Nowviewthepicturewithonlytheblue thesky?Seethecontributionofacolorbysetting light.Howdoesthepicturelookdifferent?What allofthecomputerdisplaycolorstoasingle detailscanyouseebetterinthebluelight?What picturecolor. isvisibleintheredlight? A: Blueisthedominantcolorintheskyandred theleastcontributingcolor. A: Thereisnovisibledetailinthesky.Theedges ofthebricksaroundthebuildingareindistinguish- able.Thetreesaredarkgray,andthemaninthe redshirtisveryhardtosee.

14 Global Systems Science Interpreting Digital Images—Teacher Guide Question11 .Iftheskyisbluebecauseoftiny atmosphericparticlesscatteringbluelight,why istheSunyellow?Hint:thisisagoodtimeto takealookbackattheTri-ColorReferenceChart thatyoucreatedinPart1[Activity1].

Subtractingbluefromwhitelightleavesredand green,whichisyellow.

Question12.IftheSunappearstobeyellow,why docloudsappearsowhiteintheimage?Ifyou wereridingonasatellitethousandsofmiles abovetheEarth,whatwouldbethecolorofthe “sky”(orouterspace)andwhatwouldbethe colorofsunlight?

A: Cloudsappearwhitesincecloudsreflectthe yellowfromthesunandthebluefromthesky. Yellow+Blue=White.

Inouterspace,solittlelightisreflectedbyspacethatitwouldappearblack andthesunlightwouldbewhite.

Question13.Whyisthecoloroftheskydifferentatsunsetfromthemiddleof theday?WhataboutthecloudsandtheSun?

A: Sunriseandsunsetoftenproduceayellow, orange,orredSuninthesky.Thisisaresultof thesunlightgoingthroughagreateramountof atmosphere,increasingtheamountofscattering oftheblueandgreenlightbytinyatmospheric particles.Scatteringfavorstheshorterwave- lengths,violetandblue,sothesearedepleted fromsunlight.Greenlight,wavelengthslonger thanbluelightbutshorterthanred,scattersless Extensions thanbluelight,butthelossbecomesevidentwhen Lookatcolorpicturesonthecomputerscreen thesunislowerinthesky.Thisleavesapredomi- throughcoloredfilters.Trytoreproducewhatyou nanceofredlightinthesunbeamsatsunriseand seeusingtheColorPicturesoftwarecontrolsettings. sunset.Asthisredlightreflectsoffclouds,the cloudstakeonacoloroftheremainingsunlight Thiswillhelpthestudentstophysicallyseewhat sincethisistheonlylightavailabletoreflectoff thesettingsaredoingtothepictureswhenthe thewhiteclouds. controlbuttonsarechanged. Aslongastheimagefileisnottoolarge(try tolimittoamegabyteinsize),the ColorPicture Question14.Whatcoloristhedominantcolorof programcandisplayanypicture,whichallows thewater?Whereistheblueinthispicture? studentstoanalyzepicturesoftheirchoice. A: Redisthedominantcolorbecauseitisreflect- Dependingonthewidthandheight,aportionof ingthelightfromtheSun–thebluehasbeenlost thepicturemaybecutoff,buttheprogramstill byscatteringintheatmospherefartherawayfrom functionssotheremainingpartoftheimagemay thecamerasoitcan’tbeseen. beexamined.

Global Systems Science Interpreting Digital Images—Teacher guide 15 Background Reading Materials

Basicsonthereflectionoflightandsurfacecharacteristics,includingJava tutorials(spendtimeexaminingtheusefulinformationdisplayedinthe tutorialssincetextislimited): http://micro.magnet.fsu.edu/primer/lightandcolor/reflection.html Anexcellentbutslightlytechnicaldiscussionwithgoodgraphicsonthe interactionoflightandmatter: http://www.adobe.com/support/techguides/color/colortheory/matter.html

Discussionofthecolorsintheskywithpictures,butneglectstodiscussgreen duringsunrise/sunset: http://cimss.ssec.wisc.edu/wxwise/bluesky.html Acompletediscussionwithoutpicturesorgraphics: http://www.sciencenet.org.uk/database/Physics/SolarSystem/p01054c.html

Acompletediscussionandgraphicsplusotherrelatedquestionstosky optics,includingwhycloudsbecomedarkgraywhenthick: http://www.usatoday.com/weather/askjack/wfaqsky.htm

16 Global Systems Science Interpreting Digital Images—Teacher Guide Activity 3: Exploring & Measuring Light Purpose • Toexplorereflectance,transmission,absorption,andemissionoflightfrom variousobjectsusinglight-sensitiveprobesattachedtomultimeters. • Toprovideexperiencesworkingwithinfrared(IR)light. Why? Studentsneedhands-onactivitiesmeasuringtheintensityofdifferent wavelengthsoflight,especiallysincewavelengthswecannotseemayormaynot behavesimilarlyasvisiblelight. Materials Onesetofthefollowingequipmentforeachteamoftwostudents

• multimeterwithavoltmetersensitivetovoltages lessthan2volts –Digitaldisplaypreferredoveranalogdisplay –Cannothaveautorangingfeature • Optional:digitalcameraorcamcorderwithLCD displayandTVremotecontrol. Example:Radioshackmultimetercatalognumber 22-810($19)orJameco119212multimeter($15) • Optional:redlaserwithpaperandtape. • Oneredandoneblackwirewithalligatorclips • Optional:1inchsegmentsofdrinkingstrawthat oneachend slidesnugglyoverLEDs. • IRLED(Example:Radioshack276-143cHigh- • Optional:LEDsofotherwavelengths/colors. outputInfraredLEDT-13/4casewithbluishlens, • Redpermanentmarker(suchasaSharpie cost$1.79) marker). • RedLED(Example:Radioshack276-3095mm Wide-AngleRedLED,1.7volt,20mA,800mcd, clearlens,cost$1.49) Preparation • Worksheets 1.Checkbatteriesonallmultimeterspriortoclass. • 1.5voltbattery(AAA,AA,C)andeitherabattery 2.Photocopyworksheetsforeachstudent. holderortwocopperwires 3.Usingaredpermanentmarker,colorthelongest • Protractors wireofeachLED. • Tapemeasures • Coolerorthickcardboardbox • Onewarmandonecoldsource(eitherhot/cold heatingpads,icecubes,etc.)

Global Systems Science Interpreting Digital Images—Teacher guide 17 Student Investigation Thisactivityisallowsexplorationofreflectance,absorption,emission,and transmissionoflightfromvariousobjects.Studentsusesimpleinstrumentsto measurehowsurfacessuchasleaves,grass,water,dirt,rocks,pavement,and concretereflectIRandredlight.Thisexperienceiscriticalforlearningtointerpret satelliteimagessinceoneoftheprimarywaystoidentifysurfacetypewithsatellite measurementsistocompareintensitiesofreflectedIRandredlight.Italso conveystheideaofgroundtruth:verifyingthatdataacquiredinsatelliteimages hascharacteristicsthatcanalsobemeasuredontheground.

Measuring Reflection of Land Covers

Surface Voltage of Voltage of Reflect Voltage Voltage of Reflect Cover Red LED Red LED Red Light of IR LED IR LED IR Light from from [%] from from [%] sunlight reflected sunlight reflected light light Water Low Low

Green Low to High Growing Moderate Plant Dirt/Soil Low to Low to Moderate Moderate

Concrete Moderate Moderate

18 Global Systems Science Interpreting Digital Images—Teacher Guide Activity 4: Displaying Invisible Light Purpose Learntotranslateinvisibleelectromagneticenergiesintovisiblecolor displays.Animageinwhichinvisibleelectromagneticenergiesarerepresented bycomputerdisplaycolorsisknownasafalse color image. Materials • Computerlab • FalseColorsoftwareprogram • Satelliteimages: MtStHelens_1973.jpeg Rondonia_1975.jpeg GreatSaltLakeUtah_1987.jpeg OrlandoDisney_1986.jpeg Note:allsatelliteimagesarefromtheUnitedStatesGeologicalSurvey’s(USGS) Earthshotswebsiteathttp://edcwww.cr.usgs.gov/earthshots/slow/tableofcontents

Thiswebsitecontainsover40casestudiesof changingsurfacefeaturesovertimefromaround theworld.Articlesdescribeeachofthestudies, andsatelliteimagesareoftenavailableatdifferent scalestoexaminetheextentofthefeatures,and Preparation manyimageshaveaccompanyingsurface 1.Loadsoftwareapplicationsandpicturesontoall photographstoexplorehowthefeatureslookfrom computersand/orserverthatwillbeusedduring anairplaneoronthegroundcomparedtoimages class.Seeappendixtocheckrequiredcomputer takenfromasatellite.Allofthesatelliteimages, settings. whichareinjpeg(picture)format,canbe 2.Photocopyworksheetsforeachstudent. downloadedontoyourcomputerbyeitherclicking andholdingthemousebuttonorbyright-clicking anadvancedmouseonthesatelliteimageandthen Prerequisiteforthisactivity:studentsshould savingthejpegontoyourcomputer.Theprogram befamiliarwiththeconceptofelectromagnetic willrunmoreefficientlyifyousavethefiletothe spectrumandthatthereiselectromagneticenergy samefolderthatcontainstheFalseColorsoftware invisibletooureyes.Inparticular,theenergies application. adjacenttothevisiblepartoftheelectromagnetic spectrumareinfrared(atlowerenergythanthered endoftherainbow)andultraviolet(athigher energiesthanthevioletendoftherainbow). Studentsshouldalsobefamiliarwithhowpictures onacomputerdisplayareproducedbyvaryingthe intensitiesofred,green,andblueatverysmall pointsonthecomputerscreen.

Global Systems Science Interpreting Digital Images—Teacher guide 19 Student Investigation Question1.Inthis“blue-less”world,whatcolorswouldyouexpect tosee?Doyouseetheseallofthesecolorsonthisimage?What colorsareseenandwhatcolorsaremissing?

A: Withouttheabilitytoseeblue,thecolorsthatwouldbeavailable wouldbecombinationsofonlyredandgreen:therefore,red,green, yellow,orange,andblackwouldbepossible.Missingwillbeblue, cyan,magenta,white,purple,andbrown.UsetheTriColorapplica- tiontovisualizethecolorsandshadesthatarepossibleandmissingin thisscenario.

Question2.Howdoestheintensityoftheinfrareddatacompareto thatofthevisibleredandgreenlight?

A: Infraredbehavesdifferentlyfromvisiblelight,andthisimage introducesseveraldifferences,butitdoesnotprovidedefinitive examplesunlessstudentseitherknowtheterrainandlandcover surroundingMt.St.Helensorarealreadyfamiliarwiththeconcepts ofLandsatimagery.ThesnowontopMt.St.Helensreflectsmost visibleandinfraredlight;andthelaketothenortheastofthevolcano reflectslittleinfraredorvisiblelight.Theremainingsurfacesappear tobeintwogroups:oneareathathasintermediateintensityvalues ofbothinfraredandvisiblelight(theseareascorrespondprimarilyto exposedrockorsoil),andonethathassignificantlygreaterinfrared intensitiescomparedtothevisiblelight’s(theseareascorrespondto vegetatedareas).

Surface Cover Infrared Visible Red Visible Green Color in Standard Landsat Imagery Forest 5 1-2 2-3 Pink to Red Lawns 5 1-2 2-3 Pink to Red Crops 5 1-2 2-3 Pink to Red Water 0 0-1 0-1 Black Snow 5 5 5 White Cloud 5 5 5 White Rock / Soil 2-3 2-3 2-3 Gray to Tan Buildings 2-3 2-3 2-3 Gray to Tan Paved Roads 2-3 2-3 2-3 Gray to Tan

Some of these features may be too small to completely fill pixels and cases may appear ambiguous, but some tenacious students will be able to find data to fill all the categories.

20 Global Systems Science Interpreting Digital Images—Teacher Guide Concluding Discussion Reviewthefollowingthree-stepprocesstointerpretsatelliteimages: First,identifythecolorsofthesatelliteimagesanddeterminethecontribution ofred,green,andblueinmakingthecolors.Forinstance,ifyellowisobservedin theimage,thereisanabsenceofblueinthisportionoftheimage,andmaximum intensityofredandgreen.Ifthereisredintheimage,thenthereisanabsenceof greenandblue. Second,youmustknowwhichsatellitemeasurements’wavelengthsaremapped tothecomputermonitor’scolors.Forinstance,intheseLandsatmeasurements fromUSGS,infraredmeasurementsareplacedinthecomputerdisplay’sredcolor gunandmeasurementsvisibleredandgreenareplacedinthegreenandblueguns, respectively. Computer Wavelength Display of Satellite Sensor Color Measurement Standard convention Red Infrared of color settings for Green Visible Red Landsat imagery Blue Visible Green

Now,convertthecomputerdisplaycolorintothecontributionsofthesatellite sensordata.Usingtheexampleinthefirststepofidentifyingtheobserved colors,yellowonthecomputerimagewouldindicatethatthereisanabsenceof visiblegreenlightandthereisamaximumofinfraredandvisibleredlight.Red colorwouldmeanthereisamaximumofinfraredlightbutanabsenceofvisible redandgreenlight. Third,relatethephysicalpropertiesoftheEarth’sfeaturesthatwould producetheobservedpatternsinthesatellitesensormeasurements.Landsat sensorsmeasuretheintensityof reflected electromagneticenergyfromthe surfaceoftheEarth.So,thecaseoftheyellowcolorinthecomputerdisplayed satelliteimage,thesurfacepropertieswouldreflectahighpercentageofthe Sun’sinfraredandvisibleredlight,butnotreflectthevisiblegreenlight.An observedredcolorinthecomputerimageindicatestheEarth’ssurfaceatthat locationwasreflectingalargeamountofinfraredbutnotofvisibleredand green.Oneofthegoalsoftheseactivitiesisthatstudentswilllearntoidentify thetypesofsurfacesthatproducethemostcommonlyobservedcolorsinLandsat imagery.

In review, the three steps used to interpret satellite images follow:

Identify the Relate Computer Relate the Satellite Colors in the Colors to the Data to the Physical Computer Intensities of the 3 Properties affecting Display Sets of Satellite the Measured Sensor Data Electromagnetic Energy

Global Systems Science Interpreting Digital Images—Teacher guide 21 Extensions Therearemanysatelliteimagesavailableat theUSGSEarthshotswebsitethatcanbe downloaded,eachprovidingarichexamplefor studentstoexploreandtesttheirobservationsof infraredandvisiblelightbehavior.Studentsmaygo tothesiteanddownloadtheirownimagestouse withtheFalseColorsoftwareapplication. Usingasetofqualitycolorfilters,available throughmanyscienceeducationmaterial distributors,lookattheworldthroughthesecolored filtersandhavestudentsrecordtheirobservations ordrawpicturesofthenewcolorstheysee.In addition,writewordsonwhiteorcoloredsheetsof paperwithcrayon,andtrytoreadwithwhileviewing withdifferentcoloredfilters.Relatethistoviewing aforestwithagreenorredfilter.

Background Reading Materials Discussionoffalse-colorsatelliteimageswithgoodanalogies: http://imagers.gsfc.nasa.gov/ems/visible.html

BackgroundreadingavailablefromtheUSGSEarthshotswebsitethatcoversLandsatimagery andsurfacecharacteristics: http://edcwww.cr.usgs.gov/earthshots/slow/Help-GardenCity/Help-GardenCity

Forviewing“truecolor”picturestakenfromtheSpaceShuttle,whichishelpfulforstudents togainaperspectiveofhowtheEarthlooksfromhundredsofmilesabovetheground beforefalse-colorimagesareconsidered: http://www.earthkam.ucsd.edu/public/images/tutorials/imageCaps.shtml

22 Global Systems Science Interpreting Digital Images—Teacher Guide Activity 5: Using Analysis Tools

Purpose •Developskillsusingbasicsatelliteanalysisandvisualizationtools Materials • Computerlab • SurfaceTypesoftwareprogram • Satelliteimages: MtStHelens_1973.jpeg,MtStHelens_1983.jpeg,MtStHelens_1996.jpeg (TimeseriesofMt.St.Helens;onepriortoitseruption,thesecondshortly afteritseruptionandthesecond13yearslater.Additionalsatelliteimages areavailableattheUSGSEarthshotswebsite.Fordetailsonwhereandhow toobtaintheseimages,seethenoteinActivity2Materialssection.) Preparation 1.Loadsoftwareapplicationsandpicturesontoallcomputersand/orserverthat willbeusedduringclass.SeeAppendixtocheckrequiredcomputersettings. 2.Photocopyworksheetsforeachstudent. Prerequisiteforthisactivity: studentsshouldbefamiliarwiththeRed- Green-Bluecolorspaceandhowfalsecolorimagesareusedtovisualizesatellite datathatoftencontainselectromagneticradiationinvisibletohumans. Student Investigation

Question1.Whatarethemaximumandminimum Question3.Thisimageisorientedsothatnorthis xandyvaluesyoucanfindonthesatelliteimage? upandeastistotheright.Theeast-to-west andnorth-to-southextentsofthesatelliteimage Maximumandminimumxvalues:449and0,and arehowmanymiles?Whatisthedistancefrom themax/minyvalues:323and0. theupper-leftcornertothelower-rightcorner Question2.Usingthesmallwhitesquare,which oftheimage?Hint:youwillneedtousethe representsonemilealongeachedge,inthe PythagoreanTheoremifyouareusingthepixel lowerleftoftheimage,whatisthenumberof analysistooloryoumayusethelinelengthin pixelsthatrepresents1mile?Assumingtheedge pixelsoutputfromthelineanalysistool. ofonepixeltouchestheedgeoftheneighboring Thesatelliteimage26.4mileswideand19miles pixel,whatisthesizeofonepixel?Howmany high,andhasadiagonaldistanceof32.5miles pixelsrepresent10miles? (upper-leftcornertothelower-rightcorner).

1mile=17pixels.Onepixelis1/17milelong. 170pixelsrepresent10miles.

Global Systems Science Interpreting Digital Images—Teacher guide 23 Question4.Whatisthegreatestdistanceacross Question6.Usingthelineanalysistool,measure thesnowcoverobservedonMt.St.Helensin thediameterofcalderaformedbytheeruption. thelowerleftcornerofthesatelliteimage? Acalderaisthecraterformedbyavolcanic explosionorbythecollapseofavolcaniccone. A: Thegreatestdistanceacrossthesnowcover Findthelocation(x,ycoordinates)ofthecenter observedonMt.St.Helens2.6miles. ofthecalderaandcomparethistothelocation ofthecenterofthevolcanoasseenin1973. Question5.Whatisthegreatestwidthacrossthe Doesthisexplainthedirectionwheremostof lakeobservedintheleftcenterofthesatellite thevolcanicashfell? image?Whatisthegreatestlengthacrossthe lake? A: Thediameterofcalderais1.3miles.The calderaisnorthoftheoriginalpeakofMt.St. A: Thegreatestwidthacrossthelakeis1.4miles Helens,whichwouldsuggestthattheeruptive andthegreatestlengthis2.2miles. blastwouldhavegonetowardthenorth.

Usingthe1973,1983,and1996imagesofMt.St. Helensfillinthefollowingtable.

24 Global Systems Science Interpreting Digital Images—Teacher Guide Question7.WhatarethemaximumandminimumvaluespossibleforNDVI, providedyoucannotdividethesumoftheintensitieswhenequaltozero. BasedonthecolorsobservedontheLandsatimageryofMt.St.Helens,an NDVIvaluenearthemaximumvaluecorrespondstowhattypeoflandsurface cover?WhataboutforNDVIvaluesnear0?Andwhatappearstoproduce NDVIvaluesneartheminimumvalue?Doesthistechniqueappeartoworkfor thesatelliteimagesofMt.St.Helens?Doesithaveproblems?

A: ThemaximumandminimumvaluesofNDVIare+1and–1,respectively.AnNDVI valuenearthemaximumvaluecorrespondstovegetation,near0thenexposed rockandsoil,andneartheminimumvalue,water,iceorclouds,althoughsnow canproducevaluesof0whenboththereflectedintensitiesofinfraredandred lightareatamaximum.NDVIprovidesanadequateinsighttothedestructionof vegetationduringtheeruptionandthereforestationthattookplaceduringthe followingyears.TheNDVIschemedoesnotprovideinformationaboutthetypeof vegetationorothertypeofgroundcover,anditisnotcompletelycalibratedto theamountofvegetationcoveringtheground–forinstance,anNDVIvalueof+1 doesnotnecessarilyrepresenta100%groundcoverofvegetation. Extensions Mathematicalchallengesthataccompanythepixeltoolandfalsecolor images Challenge1.CreateacolorschemeinRGBcolorspacewheretheintensityofall visiblelightproducedcolorsrangeonlyfromredtoblack.Blackisproduced whenthereisnolight(i.e.,zerointensity),andthemaximumlightintensity appearsasthebrightestred.

Answer:Let’sexpresstheintensityoflightasapercentagewith0%=nointensity and100%=maximumintensity.Let’sfurtherdefinetheintensityoflightasthe averageoftheintensitiesofred,green,andbluelight:

I=(IRED+IGREEN+IBLUE)/3

WhereIRED,IGREEN,andIBLUEcanbedeterminedusing thepixeltool. Tohavethecolorsrangefromredatmaximum intensityandblackatnointensity,setthevalues ofRGBto(I,0,0). Challenge3.Createacolorschemeinwhichthe colorsrangefromblackthroughgrayshadesto Challenge2.Createacolorschemeinwhichthe white.Blackisproducedatmaximumintensity colorsrangefromwhitethroughgrayshadesto oflight,whitewhenthereisnointensity,and black.Whiteisproducedatmaximumintensity shadesofgrayarecreatedwithintermediate oflight,blackwhenthereisnointensity,and intensities.Notethatthisistheoppositeofthe shadesofgrayarecreatedwithintermediate colorschemecreatedinthe Mathematical intensities. Challenge #2.

Answer:Asdoneinthepreviousmathematical Answer:Asdoneinthepreviousmathematical challenge,expresstheintensityoflightasa challenges,expresstheintensityoflightasa percentagewith0%=nointensityand100%= percentagewith0%=nointensityand100%= maximumintensity,anddefinetheintensityasthe maximumintensity,anddefinetheintensityasthe averageofintensitiesofred,green,andblue averageofintensitiesofred,green,andblue light. light. Rememberthatgrayshadesareproducedwhen ToreversetheRGBschemedevelopedinthe theintensityofred,green,andblueareequal.To MathematicalChallenge#2,subtracttheintensity createanimageinshadesofgraywithwhite valuefromthemaximumintensity,whichis100%. representingmaximumintensityandblackno ThecolorschemebecomesRGB=(100-I,100-I, intensity,setthevaluesofRGBto(I,I,I). 100-I).

Global Systems Science Interpreting Digital Images—Teacher guide 25 Challenge4.Createacolorschemeinwhichthecolorsrangefromredtowhite. Redisproducedatmaximumintensityoflight,andwhitewhenthereisno intensity.

Answer:Asdoneinthepreviousmathematicalchallenges,expresstheintensityof lightasapercentagewith0%=nointensityand100%=maximumintensity,and definetheintensityastheaverageofintensitiesofred,green,andbluelight. Thisisthetrickiestofthechallenges.Remember,red,whichrepresentsmaxi- mumintensity,isproducedwhenRGB=100,0,0;andwhite,whichrepresentsno intensity,isproducedwhenRGB=100,100,100.Noticethatthevalueofred doesnotchangeforthetwoextremecases,soRGBforallintensityvalueswill looklike100,x,x. Thischallengealsorequirescreatingaschemesimilartothatusedinchallenge #3:invertingthescalebysubtractingtheintensityfrommaximumintensity. CombiningthesetwoideascreatesanRGBschemeof100,100-I,100-I.

Arethereothercolorschemesstudentswouldliketocreate?Askforideas andworktogethertosolvethechallenges. Independent Exploration Studentsmayexploreincrementalchangesofthevegetationcoverafter theeruptionusingadditionalsatelliteimagesofMt.St.Helens(1988and1992) availableat http://edcwww.cr.usgs.gov/earthshots/slow/MtStHelens/MtStHelens Afterthisactivity,thefollowingreadingsmayprovidebetterunderstanding oftheactivitiesaswellasprovideinsighttothedevelopmentoftechnologyused inremotesensing. IntroductiontotheHistoryofRemoteSensing http://edcwww.cr.usgs.gov/earthshots/slow/Help-GardenCity/remotesensing IntroductiontotheLandsatseriesofsatellites http://edcwww.cr.usgs.gov/earthshots/slow/Help-GardenCity/Landsats MoredetailoncolorinterpretationofLandsatimages http://edcwww.cr.usgs.gov/earthshots/slow/Help-GardenCity/RGB-NRG DiscussionofvegetationidentificationusingLandsatimages http://edcwww.cr.usgs.gov/earthshots/slow/Help-GardenCity/beyondimages Background Reading Materials Anexcellentintroductiontothepurposeofmeasuringvegetationcoverandthe basicsofLandsatsensorsandfalse-colorimagery(thereisadditionalmaterial onothersatellitesandtheirsensors,solimitreadingtotheintroductionand thefollowingparagraphsonLandsat). http://www.ae.utexas.edu/courses/ase389/midterm/curell/curell.html#intro NASA’sintroductiontoremotesensingwithafocusonLandsat,intendedfor advancedhighschoolstudentstocollegestudents,see http://rst.gsfc.nasa.gov/Front/overview.html Theon-lineremotesensingtutorialdevelopedbyCanadaCentreforRemote Sensingforseniorsinhighschooloruniversitystudentsisat http://www.ccrs.nrcan.gc.ca/ccrs/eduref/tutorial/tutore.html

26 Global Systems Science Interpreting Digital Images—Teacher Guide Activity 6: Satellite Analysis Purpose Qualitativeandquantitativeanalysisofvegetationchangescausedbyhuman interactionandnaturalevents. Materials • Computerlab • VegetationAnalysissoftwareprogram • Satelliteimages:(TimeseriesoftropicalrainforestinRondonia,Brazil.) Rondonia_1975.jpeg,Rondonia_1986.jpeg,Rondonia_1992.jpeg Preparation 1.Loadsoftwareapplicationsandpicturesontoallcomputersand/orserver thatwillbeusedduringclass.SeeAppendixtocheckrequiredcomputer settings. 2.Photocopyworksheetsforeachstudent.

Prerequisiteforthisactivity: studentsshouldbefamiliarwiththeRed- Green-Bluecolorspace,howfalsecolorimagesareusedtovisualizesatellite datathatoftencontainselectromagneticradiationinvisibletohumans,andthe basicsofvegetationindices,inparticular,NDVI. Student Investigation

Reviewwiththestudentsthatinthe‘Using drought.Thisdoeshappen,butcommonly,first AnalysisTools’activity,theyexaminedhow roadsappear,thenpeoplemoveintosettle,and vegetationrespondedtoanaturaldisaster.Humans theyclearlandfortheirhomesandfarms/ didnotdestroythevegetation,nordidtheychange gardens.Thishasatremendouseffectontherain theenvironmenttoslowthereforestationaround forestsbycreatingbreaksinthecanopywhich Mt.St.Helens.Inthisactivity,studentswillexplore changetheamountofsunlightreachinglower levelsofthetreesandground,changingthe acommonwayinwhichtropicalrainforestsare humidity.Also,windcannowreachlowerinthe beingdestroyed.Withthesatelliteanalysistools canopy,alsochangingthemoisturelevels,affect- thatareprovided,studentscanmakedetailed ingplantgrowthandanimalbehavior. observationsanddrawsignificantconclusionsbased ontheirwork. Question2.DoyouthinktheUnitedStateslostmuch Question1.Howdoyouthinktherainforestsof ofitsforestsofthe1700sto1800sindifferent theglobearebeingdestroyed?Isitbyinsects? wayscomparedtotherainforests? Drought?Large-scaleforestfires? A: SettlersmovingwestacrosstheUnitedStates A: Althoughstudentsmaynotknowthemecha- clearedlandforvarioususes,suchaslumber, nismsthataredestroyingtropicalrainforest, farming,grazing,andresidences,andaspopula- manymayhaveheardthingsfromthenewsor tionsbecameestablished,forestswerenot othersources.Itiscommonlyperceivedthat reestablished.Isthisanydifferentthanwhatis largefiresaresetandsweepacrosshugeex- takingplaceintherainforests?Peoplearenot pansesofrainforest,similartowhatisobserved destroyingforestsjustforthesakeofdestruction, inthewesternUnitedStatesduringperiodsof butrather,theyaredevelopingdifferentusesfor thelandtomeettheirneeds.

Global Systems Science Interpreting Digital Images—Teacher guide 27 Question3.Whatisthedistancebetweenroadsthatrunwesttoeastonthe satelliteimage.

A: Thereisroughly3milesbetweentheeast/westroads.

Question4.Drawanorth-southlineacrosstheseeast-westroadsanddescribe howthevegetationchangesalongtheline.Whataretheaverageormean NDVIvaluesalongthelineforeachofthe3years?Compareyouvaluesto thoseobservedinyourclass.

A: NDVIvaluesappeartoreboundslightlyfrom1986to1992comparedto1975 to1986.

Question5.Createaboxwithcorner#1atx=363andy=178andcorner#2at x=378andy=190.Howmanysquaremilesdoesthisboxcover?Howmany pixelsarewithinthisbox?Whatsurfacefeaturesappearinthisboxforthe 1986and1992images?

A: Theboxcoversavillageof2.2squaremilesandhas208pixels.

WhatistheaverageoftheNDVIvaluesforallpixelswithintheboxforeachof thethreeimages?

A: TheaverageNDVIvaluesofallpixelsin1975is0.84,in1986is–0.16,andin 1992is0.09.

Question6.Createaboxwithcorner#1atx=66 andy=14andcorner#2atx=295andy=141.How manysquaremilesdoesthisboxcover?How manypixelsarewithinthisbox? Challenge.Usethesesatelliteimagesandtoolsto describehowvegetationischanginginthis A: Theboxcovers304.5squaremilesandhas 29,440pixels. sectionofBrazilianrainforestfrom1975to1992. Examinethemanyfeaturesontheimages,such WhatistheaverageoftheNDVIvaluesforallpixels asroadsandvillages,andexplorehowvegetation withintheboxfor1975to1992? changeswithinandnearthesefeatures.Based ontheseobservations,whatisyourprojection ChangetheminNDVIvalue(whiteboxinupper fortheforestgroundcover?Inthisprojection, rightcorner)to0.6andclickthe‘Run’button. considerhowwelltheNDVIidentifiesthetype Fromthegraphthatresults,whatisthepercent ofvegetationcoveringtheground.Presentyour NDVIvalueswithintheboxthatfallwithinthis findingsandyourconclusionstotheclass. rangeofNDVIvalues(0.6to1.0)from1975to 1992? A: Thevegetationquicklydepletedastheroads A: TheaverageNDVIvalueswithintheareafor developedbetween1975to1986.Eitherdueto 1975is0.87,in1986itis0.75,andin1992is0.82. conservationeffortsoraspeopleestablished ThepercentNDVIvaluesbetween0.6and1.0for residenceswhichallowedforvegetationtogrow 1975is100%,in1986is80%,andin1992is86%. aroundthebuildings(remember,wedon’tknow thetypeofvegetationbeingidentifiedbyahigh NDVIvalue),thelostofvegetationappearedto slowfrom1986to1992comparedto1975to1986.

28 Global Systems Science Interpreting Digital Images—Teacher Guide Conclusion Discusstheobservationsandconclusionsofyourclassmates. Isthereagreementamongviews?Arethereconflictingopinionsanddata? Didyourviewsofdeforestationchangeafterworkingwiththesatellitedata? Whatadditionaldatawouldhelpcompleteanyquestionsyoustillhaveabout deforestationinthisareaofBrazil? Extensions GototheUSGSEarthshotswebsiteandexamineseveralofthe40available casestudies.Ifaseriesofsatelliteimagesinterestsyou,downloadthejpegsto thefoldercontainingtheremotesensingsoftware.Exploretheimageswiththe VegetationAnalysis, LandsatAnalysis, or ImageAnalysis software programs. For information of the latter two programs, see the software technical manual. Background Reading Materials ForabriefdiscussionofthedeforestationintheRondoniaarea,see http://edcwww.cr.usgs.gov/earthshots/slow/Rondonia/Rondonia

Riyadh, Riyadh, Saudi Saudi Arabia Arabia 1990 1972

http://edcwww.cr.usgs.gov/earthshots/slow/tableofcontents

These images show rapid growth in ’s cities Satelliteimages and agricultural areas. Riyad,l capital of LM1178043007226890(Riyadh,Landsat1MSS,24September1972) Saudi Arabia, grew from about a population of half million in 1972 to almost two million in LT4165043009024310(Riyadh,Landsat4TM,31August1990) 1990. Southeast of Riyadh, irrigation clearly increased due to the investment of part of Saudi Arabia’s oil revenues in an effort to modernize agriculture.The smaller city of Buraydah, northwest of Riyadh, shows the same pattern of urban growth and agricultural development. From 1972 to 1986 the population of Buraydah almost tripled, from 60,000 to about 180,000 people.

Global Systems Science Interpreting Digital Images—Teacher guide 29 Appendix: Software Settings

• Setcomputermonitorstoascreensizeofatleast1024x768. MixingColor,Tricolor,andGame_TriColoralsorunon800x600resolution screens. NOTE:thereare“small”versionsof PixelView,ColorPicture,FalseColor, andSurfaceTypewhichcanrunoncomputerswithascreensizeof800x600. Ifyoucannotusethehigherresolutionprograms,usetheseversions. Onlyaportionofthecomputeractivitywillbeseenusingsmallerscreen dimensions. • Setcomputercolorsforthemaximumnumberofpossiblecolors. Youwillneedtohave atleastseveralthousandcolors availableforthese activitiestoproducetherequiredrangeofcolors.

To set both colors and screen size: OnPCs,usethedisplaycontrolsettings(openthecontrolsettingsandthenthe displayfile). OnApplecomputers,clickonthe‘Apple’intheupperleftcornerofthescreen, openthe‘controlpanels’andthenthe‘monitors’file.

IfusingPCs,youwillneedtodownloadandinstallQuicktimeontoeachcomputer. ThisisAppleprogramisfreeat: http://www.info.apple.com/usen/quicktime/ Whileinstallingtheprogramusingthemenu- drivenprocedure,makesuretheoptionfor viewing‘jpegs’isselectedusingtheappropriate button. MixingColor

Note:allsatelliteimagesarefromtheUnitedStates Purpose:Tovisualizethedifferencebetweenmixing GeologicalSurvey’s(USGS)Earthshotswebsite colorinpigmentandlight. at GettingStarted http://edcwww.cr.usgs.gov/earthshots/slow/ Selecttwocolorsbyclickingonacolorboxin tableofcontents eachofthetwocolorpalettescontaining6 Thiswebsitecontainsover40casestudiesof colors. changingsurfacefeaturesovertimefromaround Palette1setsthecoloroftheleftsideof theworld.Articlesdescribeeachofthestudies, thebox,andpalette2setsthecolorforthe andsatelliteimagesareoftenavailableatdifferent rightsideofthebox.Themixedcolorwill scalestoexaminetheextentofthefeatures,and appearbetweenthetwo.Theprogramuses manyimageshaveaccompanyingsurface equalproportions(intensityoramountof photographstoexplorehowthefeatureslookfrom pigment)ofeachcolorwhenmixing. anairplaneoronthegroundcomparedtoimages takenfromasatellite. Theuppercolorboxrepresentsmixingcolors ofpaint,andthelowerboxrepresents Allofthesatelliteimages,whichareinjpeg mixingcolorsoflight. (picture)format,canbedownloadedontoyour computerbyeitherclickingandholdingthemouse Thecolumnofthecolorpalettesrepresentthe buttonorbyright-clickinganadvancedmouseon primarycolorsinpigment(cyan,magenta,and thesatelliteimageandthensavingthejpegonto yellow)andinlight(red,green,andblue). yourcomputer.

30 Global Systems Science Interpreting Digital Images—Teacher Guide TriColor

Purpose:Explorewhatcolorsarecreatedbychangingtheintensitiesofred,green, andblue. Intensitiesaredefinedwithinthissoftwareusingwholenumbersthatrange from0to100%,whichleadstoapossible1,030,302colors(1013). Anintensityof0%indicatesthatthereisnocontributionofthisparticular color(red,green,orblue)intheobservedcoloronthescreen.Avalueof 100%meansthatallofthepossibleintensityofthecolorispresentinthe finaldisplaycolor. Colorintensitiesonmostcomputerprogramstypicallyrangebyafactor of2 8,whichleadstovaluesbetween0to255,resultingin16,777,216 colors(2563).Wefeltthatintensitiesinpercentwouldbemoreintuitive toalargeraudienceofusersthanvaluesrangingfrom0-255. GettingStarted Thereare3waystochangecolorintensity: 1)Singleclicksontheuparrowincreaseintensitybyoneunit,andsingle clicksonthedownarrowdecreasecolorintensitybyoneunit. 2)Clickandarrowandholdtoquicklychangevalues.Colorsonthetest screenwillchangeimmediately. 3)Clickthecursorineachwhiteboxandtypeawholenumberbetween0 and100%,orusethe“tab”keytomovebetweentheboxesandtypenew values.Whentypingvalues,Click‘ApplyNewColorIntensities’tosee whatcoloriscreatedwiththethreeselectedintensitiesofred,green, andblue. Game_TriColor Purpose: Allowfunandindependentwaytotest 2.Selectopponent:‘People’or‘Computer’ yourunderstandingofhowmanycolorscanbe Whenthisbuttonisclickedafterguesseshave madeusingcombinationsofintensitiesofred, beenmade,thescoresareautomaticallyreset green,andbluelight. tozero. Usersmayeitherplayagainstthecomputer 3.Press‘SetSecretColor’ (whichgeneratesarandom“secret”coloror Whenplayingaperson,asecretwindowwillpop againstanotherpersonwhosecretlysetsthe up.Inthisnewwindow,enterintensityvaluesin colortobeidentifiedbythechallenger. thered,green,andblueboxes.Thepersonto Thesoftwarekeepstrackofthenumberof guessthesecretcolorshouldnotwatchthe guessesandcorrectcoloridentifications,and screenatthistime! provideshintsforincorrectguesses.Three Whenplayingthecomputer,arandomcoloris challengelevelsprovideuserstoselectalevel setautomatically. ofdifficultyappropriateforalltalentsand experience. 4.Setyourguesscolorbyenteringintensityvalues inthered,green,andblueboxes. 1.Selectthelevelofchallenge. Whileplayingagainstthecomputer,clicking‘Set Easy(colorintensitiesmustmatchwithin15% SecretColor’providesanewsecretcolorwithout andahintisgivenafterguess) addingpointstoyourscore. Medium(colorintensitiesmustmatchwithin10% 5.Press‘TryYourGuess’toseeifyourguessedcolor andahintisgivenafterguess) matchesthesecretcolor. Hard(colorintensitiesmustwithin5%andno Ahintisautomaticallydisplayediftheguessdoes hintisprovidedafterguess) notmatchthesecretcolor.Thehintshowsthat colorintensitiesneedtobeincreasedor decreased.

Global Systems Science Interpreting Digital Images—Teacher guide 31 6.Repeatuntilcolorsmatch. Aftermatchingthesecretcolor,youmaycontinueplayingoryoumayexplore themanypossiblematchedcolors. Noguessesarechargedforexploringthesecolors. Pressing‘ShowAnswer’costs10guesspointsandtheplayermustguessanew color. Atanytime,youmayselectresetthescoretozerobyselecting‘ResetScore’ inthe‘File’menu. Formoreinformationaboutcolorsandexamples,click‘BasicsofColor’inthe ‘Help’menu.

Report_TriColor Purpose:Provideanassessmenttoolforteacherandstudentusethatidentifies theskillsandconceptsdevelopedinmodifyingtheintensitiesofred,green, andblueincreatingawidearrayofcolors. Usersmustmatch10randomlygeneratedcolors,andthesoftwarekeepstrack oftheerrorsofguessesandgeneratesareportavailableon-screen,inatext file,andprintedforstudentportfolios.Thestatisticshelpidentifyhowwell studentscanmatchtheintensitiesandthecolorproportionsofthesecret color,twocriticalstepsinunderstandingcolormadeonacomputerscreen. To run this program, set the screen size to at least 800 x 600 and as many colors as possible.

Aftertypingthestudentnameorcodeassignedbytheteacherintothe openingwindowoftheprogramandcreatedafilenamefortheelectronicreport, userswillbeabletoworkonidentifyingtherandomlygeneratedcolors.

1.Settheguesscolorbyenteringintensity valuesintheRed,Green,andBlueboxes. PixelView 2.Press‘TryYourGuess’toseeiftheguessed Purpose:Explorehowapicturewouldappearusing colormatchesthesecretcolor. differentsizepixels. Ahintisprovidedafterincorrectguesses. Thisprogramdoesnotzoomintoapicture, 3.Repeatuntilcolorsmatch. rather,itcreatesdifferentdisplaysofthesame Amatchoccurswhentheguessedintensities picturebychangingthesizeofthepixels. arewithin15%unitsofthecorresponding Picturesonacomputerscreenaremadeupof secretcolor.Thismeansthereare29,791 uniquetiles,orpixels,ofcolor. possiblematches. Pictureelementsorpixelsarethesmallestunit 4.Theprogramcontinuesuntil10colorshavebeen ofapicturewiththecolorappearingconstant matched.Areportisgeneratedon-screenand acrossthepixel. forprinting.Theelectronicfileprovidesalist Thesmallerthetiles,themoredetailsyoucan ofeachguessforall10colorchallenges,aswell see. astheoutputstatistics. Thecolorofapixeliscontrolledbythecombined intensitiesofred,green,andbluecomponents. GettingStarted Selectapicture(afileendingwith“.jpeg”, “.gif”,“.tiff”,or“.pict”)byclicking‘Select Picture’.

32 Global Systems Science Interpreting Digital Images—Teacher Guide Amenuwillpopupandanyimagestoredonthecomputermaybeselected. Ideallytheprogramworksonimagesthathave512pixelsinboththevertical andhorizontal. Imageswithsignificantlymorepixelsmaybetoolargeandanerrormessage willbedisplayed. Smallerimageswillhavetheedgesfilledwithwhiteinordertocreatea picturethatis512x512pixels.Thiswilldistortthecoloroflargerpixels adjacenttotheseedgessincethewhitecolorwillbeaveragedintothe largerpixel’scolor. Thefirstdisplayofanypicturewillappearveryblockybecauseonly4pixelsare usedtocreatethepicture. Toincreasethenumberofpixelsusedtomakethepicture,click‘Create PicturewithMorePixels’.Thenumberofpixelsincreasesbyafactorof 4witheachclick. Click‘CreatePicturewithFewerPixels’toseethepicturewithlargerpixels. Thecolorofthelargerpixelsistheaveragecolorofthesmallerpixelsthat liewithintheborderofthelargerpixel. Toseethebordersofpixelsofdifferentsizes,clickononeoftheoptionsavailable inthemenubuttonbeneaththelabel‘ShowPixelBorders’. Movethecursoracrossthepicture,andthepixelbeingdisplayedwillhavea highlightedborder. Theintensityofred,green,andbluethatmakeupthepixel’scolorwill appearintextinthelowerrightofthewindow. 0%meansthatthereisnoneofthatcolorcontributingtothepixel’scolor. 100%meansthatallofthatcolorisbeingusedtomakethepixel’scolor.

ColorPicture Purpose:Tounderstandtherearetwocomponents toapicture:therecordedormeasured intensitiesoflightcomingfromthesubjectbeing photographedandtheintensitiesofthedisplayed colorsonthecomputerscreen. Thetwodonothavetomatch,andwhenthey don’t,seehowtheimagechangesinappearance computer’sprimarycolors.Therearemany withthissoftware. combinationstotry. GettingStarted Eachchangeisautomaticallydisplayed. Selectapicture(ajpeg,gif,tiff,orpictfile)by Toseetheoriginalpicture,click‘Show clicking‘SelectPictures’. OriginalPicture’. Amenuwillpopupandanyimagestored Movethecursoracrossthepicture,andthe onthecomputermaybeselected. pixelbeingdisplayedwillhaveahighlighted border. Thefirstdisplayofanypicturewillappearnormal becausethePicture’sRed,Green,andBluedata Theintensityofred,green,andbluethat intheComputerDisplay’sRed,Green,andBlue makeupthepixel’scolorwillappearintext colors,respectively. inthelowerrightofthewindow. Selectwhichofthepicture’sthreeprimarycolors 0%meansthatthereisnoneofthatcolor thecomputerdisplay’sRED,GREEN,andBLUE contributingtothepixel’scolor. visualize.Youmayalsoshowoneprimarycolor 100%meansthatallofthatcolorisbeing atatimeoronepicturecolorinallthreeofthe usedtomakethepixel’scolor.

Global Systems Science Interpreting Digital Images—Teacher guide 33 MergePictures Purpose:Createoneimageoutofatime-lapseseriesofimages Duringourexperimentationwithusingdigitalcamerasastoolstostudycolor andcolorchangeinourenvironment,wefoundthatitisquitedifficultto combineatimeseriesofdigitalpicturesintooneimageusingexistingimaging software.Sowecreatedthissoftwarethatallowsyoutodothisquicklyand easily. GettingStarted First,enterthenumberofimagesyouwillbecombininginthewhiteboxat thetopofthepage. Youcannotchangethisvalueoncethereadingofimagesbegins,sobe accurate. Next,click‘SelectPictures’tobeginselectingJPEG,GIF,TIFF,orPictimages. Theprogramassumesthateachpictureisofidenticalsize(samenumber ofpixelsintheverticalandhorizontal)andwillnotworkotherwise. Tosavethemergedimage,gotothe‘File’menuandselect‘SaveImage’. Createafilenamedifferentfromanyusedtocreatetheimage.The savedfilewilloverwriteanyfilewiththesamename.

SplitColors Purpose: Thisprogramgivesyouthefreedomto BasicFeatures explorehowcolorsfromanimagecanbe Movethecursoracrossthepicture,andthepixel modifiedtomakeveryunusualvariationsofthe beingdisplayedwillhaveahighlightedborder. original. Theintensityofred,green,andbluethat Theprogramalsoattemptstoprovidethe makeupthepixel’scolorwillappearintext opportunitytounderstandwhytheimage inthelowerrightofthewindow. changedasitdidbyprovidinganalysistools andhistogramsofthecolorintensitiesof 0%meansthatthereisnoneofthatcolor theoriginalandresultingimages. contributingtothepixel’scolor. GettingStarted 100%meansthatallofthatcolorisbeing usedtomakethepixel’scolor. First,Click‘SelectPicture’toopenapicture(a jpeg,gif,tiff,orpictfile). ‘ShowOriginalPicture’opensawindow containingtheimagewiththeoriginalcolor Amenuwillpopupthatletsyoufindthe settings. fileyouwouldliketoselect. Thismaybehelpfulwhenyoutryto understandhowyoucreatedastrangenew image. Movingthecursorinthiswindowortheone inthemainwindowletsyouseepixelcolors ofboththeoriginalandnewimages simultaneouslywhilethepixellocationin eachimageishighlighted.

34 Global Systems Science Interpreting Digital Images—Teacher Guide ‘PlotHistogramofColors’createsagraphofthefrequencyofcolorintensities within5%incrementsobservedinboththeimagebeingdisplayedandthe originalimage. Forexample,fora500-pixelimage,iftherewere200pixelswithred intensitybetween80and85%,thefrequencyis200/500or40%. SavingImages Tosaveyourimages,clickonthe‘File’menuatthetopofthecomputer screenandselect‘SaveImage’. Apopupwindowwillletyounameyourimageandstoreitinthedesired folder. NOTE:makesuretogivethesavedfileadifferentnamefromtheoriginal -itwilldeletetheoriginal! RemappingColors Thisprogramallowsyoutodisplayonecolor,suchasgreen,inthecomputer’s redcolor. Todothis,locatethemenubuttonassociatedwiththeRedcomputer displaycolor.Itshouldhave“Red”displayedifyouareworkingwitha newlyopeningpictureandselect“Green”.Settheremainingpicture colorsto‘None’. Click‘ApplyNewColorstoPicture’andobservehowtheimagechanges. Youmaydisplayanycoloroftheimageinanyofthecomputer’scolors (red,green,andblue). ‘Invert’reversestheintensityoftheselectedcolor. Themostintensecolorwillappearverydark ontheimage,andviceversa. Ifyouapplythistoallthreecolorswhen mappedintocorrespondingcolors,you createacolor“negative”-whatyouget backfromthephotoshopwhenyoutake yourfilminfordeveloping. Checkingthe‘Mask’boxchangestheintensity oftheimage’scolorthatfalloutsideselected rangetobesetto0(zero). Iftheboxisunchecked,thecolorthatwas outsidetheselectedrangeremainssetto Eithertypetheintensityvaluesinthewhite theoriginalimage’scolor. boxesorusethesmallupanddownarrows Stretch,Compress,andShiftofColorIntensities tochangevalues. Youmaywanttodisplayonlyaportionofthe Toseehowtheimagechanges,click‘Apply rangeofacolor’sintensities,anddisplayitin NewColorstoPicture’. thesamerangeofthecomputer’scolor.Oryou Examples maydisplayithoweveryouwouldlike-ina differentcoloraltogether,inthesamerangeof Stretch:DisplaythePicture’s20to50%red valuesbutmoreorlessintensethanbefore,or intensityintheComputer’s0-100%red overalargerorsmallerrangethanselected. intensityrange. Usethecolorhistogramplotstodecidewhat Compress:DisplaythePicture’s0-100%red rangesofcolorsyouwouldliketofocuson, intensityintheComputer’s80-100%red. andmakeyourselectionusingtheminimum Shift:DisplaythePicture’s20to50%red andmaximumvalueoptionsinthetop intensityintheComputer’s70-100%red centerofthewindow. intensityrange.

Global Systems Science Interpreting Digital Images—Teacher guide 35 ImageAnalysis Purpose:Apicturemaybeworthathousandwords,butisitworthathousand pointsofdata? Withthistool,picturesbecomeavaluablesourceofspatialandcolor data. Thesoftwarewasdesignedtoworkonanydigitalimagethatisfound ontheInternetorthatyouhavecreatedwithadigitalcamera. GettingHelp Therearemanyusefulfeaturestothisprogram,andadditionalinformation isavailableinthe‘Help’menu. GettingStarted First,clickonthebuttonlabeled‘SelectImage’. Atanytimeyoumayselectanewdigitalimagebyclickingonthe ‘SelectNewImage’button. Wheneveryouselectanewimage,allfeaturevaluesareresetto defaultvalues. Aftertheimageisselected,awindowwillpopupthatasksyouwhether youcancalibratethesizeofpixelswithintheimage.Thereare4options: 1)Clickthebutton‘USGSLandsat’ifyouareusingaLandsatimagefrom theUSGSEarthshotswebsite.NOTEthatifthereismuchwhitearound theboxthatispartofthesatelliteimage,theautomatedcalibration maybecomeconfused.Checktheresultsbymeasuringthescalebox withthelinetool.Ifthecalculateddistanceisincorrect,runthe ‘ScalePresentinImage’calibrationmethodbyrerunningthecalibration byclickingthe‘CalibrateScaleTools’button. 2)Clickthebutton‘KnownPixelSize’ifyouknow thesizeofthepixels,suchasorthophotographs Awindowwillpopupinwhichyoumaydrawa fromaerialreconnaissance. linealongthescalewithintheimagebymoving 3) Clickthebutton‘ScalePresentinImage’if thecursorontotheimage. thereisalinearscalelocatedintheimage. Clickonthebeginningofthescale,which Thisincludesimagestakenwithacamerain maybearuler,apenny,oranyobjectof whicharuler,penny,orotherobjectofknown knownlength. sizeislocatednexttotheobjectyouare interestedinandthecameralensisparallelto Holdthemousebuttonanddragthecursor theobjectofinterest(notataslant).Also, totheendofthescale.Releasethemouse graphicsofdatawithadistancescale,suchas button. mapsofozoneconcentrationovertheUnited Ayellowlineisdrawnontheimagemarking Statesthatcanbedownloadedfromthe whereyouclickedontheimageandwhere Internet,canusethiscalibrationmethod. youreleasedthemousebutton. 4)Clickthebutton‘None’ifthereisnowayto Ifthelinedoesnotmatchupexactly,either calibratethescaleofthepixels. redrawthelineorfinetunethestartand Thefirstthreeoptionswillprovidedguided stoppositionsofthelinewiththesmall instructionsofwhatyouneedtoenter.Ifyou arrowsnexttothexandypositionsofthe makeamistakeinanyofthesteps,clickon lineendpoints,whicharelocatedbelow thebuttonlabeled‘CalibrateScaleTools’to theimage. repeattheprocess.Theprogramassumesthat Whensatisfiedwiththefitofthelineto thepixelsaresquareinshapesomeasuringthe thescale,enterthelengthofthescalein distanceinonedirectionisappliedtoall thewhiteboxbelow.Enteronlythenumber, directions.ManuallyCalibrateScaleTools nottheunitofthescale(suchasinchesor (Option3) centimeters).

36 Global Systems Science Interpreting Digital Images—Teacher Guide Clickthe‘Done’buttonwhenfinished. Tore-runthecalibrationmethodclickthe‘CalibrateScaleTools’button intheupperleftofthemainwindow. Clickthe‘None’buttonifthereisnowaytoknowthesizeofthepixelsinthe image. ExploringDigitalImages Usethemenubuttonbelowthetext‘DisplayTools’toviewdifferentdisplays ofthesatelliteimage. InformationontheDisplayTools Thereare12automaticallycalculatedenhancementstoviewthesatellite image. 1)RGB=standardcolorcompositeofdigitalimageryinwhichthecolorintensities ofred,green,andbluearedisplayedinthecomputerdisplay’sred,green, andblue,respectively. 2)B&W=blackandwhiteimageoftheRGBimageinwhichtheaverageofthe colorintensitytheimage’sred,green,andblueisdisplayedequallyinthe computerdisplay’sred,green,andblue. 3)Mask.Acombinationvisualizationenhancementandimageanalysistool. Displayonlythosepixelsthatmeetthresholdsyouselect. Pixelsmeetingcriteriaaredisplayedasblack. Whitepixelsrepresentthosethatdidnotmeetthecriteria. Numberofpixelsmeetingthresholdaredisplayed. Ifpixelsizeiscalibrated,areaofhighlightedpixelsiscalculated. 4-6)IR,Red,orGreen(Gray).Agrayshadeimage ofonlyoneoftheimage’sprimarycolors. Forexample,agrayshadeimageofred 10-12)RvG,RvB,orGvB(normalized):Similarto displaysthepixel’sredvalueinallthree 7-9above,exceptthatthedifferenceofthecolor colorsofthecomputer’sdisplay. intensitiesisdividedbythesumofthecolor intensities. Grayshadeimagesallowviewingofintensities withoutbiasingyoursensitivitytored, Thisprovidesawaytominimizetheeffects green,orblue. ofshadowsandindirectlightingwithinthe image. Forexample,ifapixel’sRGBvaluesare20%, 80%,and30%,respectively,itwillbe Forexample,supposeRvG(normalized) displayedas20%,20%,20%iftheRed(gray) displaytoolisselected.IfapixelhasRGB displayisselected. valuesof40%,80%,and60%,respectively, thedifferencebetweenredandgreenis40% 7-9)RvG,RvB,orGvB:Foreachpixel,display inthegreen,andthesumoftheredand thedifferencebetweentwocolorintensities. greenintensitiesis120%. Thecolorofthegreatervalueisdisplayed. Thenormalizedvaluewillbe40%/120%or Forexample,supposeRvGdisplaytoolis 0.33,whichisconvertedbacktopercent selected.Ifapixel’sRGBvaluesare20%, valuesof33%fordisplaypurposes. 80%,and30%,respectively,thedifference Thedisplayedcolorforthatpixelwillhave betweenredandgreenis60%infavorof RGBvaluesof0%,33%,0%. thegreen.Thedisplayedcolorforthatpixel willhaveRGBvaluesof0%,60%,0%. Comparethisvaluetoanotherpixelthathas RGBvaluesof0%,40%,20%.Thenormalized Therefore,thebrighterthecolor,thegreater differenceis40%/(0%+40%)whichequals thedifferencebetweenthetwo 1.Thisvalueisconvertedbacktoa measurements,andthedarkerthecolor(or percentageof100%.Thepixelwillbe closertoblack),thesmallerthedifference displayedwithanRGBvalueof0%,100%, betweenthetwomeasurements. 0%.

Global Systems Science Interpreting Digital Images—Teacher guide 37 ToseetheRGBdigitalimagewhileusinganothervisualizationscheme,clickon ‘ShowOriginalImage’andawindowwiththeRGBimagewillappear. Youmaydragthisimagetoanypositiononthecomputerscreen,andyou mayusethepoint,line,andareaonthisimageaswellastheenhanced imagedisplayedonthelargerwindow. InformationontheMaskDisplayFeature Thisfeaturesallowsyoutocontrolandquantifythevisualizerelationshipsbetween colorintensitiesforeachpixelintheimage. Youmayeitherselectarangeofvaluestohighlight(suchashighlightthe redintensitiesbetween50and75%)orrelativeintensitiesbetweentwo setsofmeasurements(suchashighlighttheredvaluesthataregreaterthan thegreenvaluesby10unitsofintensity). Valuesthatmeetthecriteriayouselectarecoloredin“Black”andvalues notmeetingthecriteriaarecoloredin“White.” Toselectacategorytomask,eitherclickanyofthethreecheckboxesnextto Red,Green,orBlueorusethesmallarrowstochangethemaximumorminimum valuesassociatedwitheachcategory. Ifyouselectmorethanonecategory,themaskthatisgeneratedrequires allcriteriatobemet.Soifyoucreateamaskwithredbetween50-75%and greenbetween25-60%,thepixelsinblackwillbehaveredbetween50& 75%ANDgreenbetween25&60%. Settingcriteriaforarelativerelationshipbetweenintensityvaluesrequiresyou toselectdifferentintensitiesintheequation(youcannotcompareredtored, forinstance). Ifyouselectarelationship“Red=Red+10”, amessagewillpopuprequestingyouto 3)Theareatoolcalculatesthefrequencyof selectnon-matchingvariables.Avalid occurrenceofcolorintensitiesofpixels relativerelationshipwouldbe“Red=Green withintheselectedarea. +10”. Touseeachtool,clickthecursoratsomepoint The“+/-”optionactsasafilterthatallows withintheimage,anddragthecursortoobtain youtosettherangeofvaluewhenyouare thedesiredpoint,line,orrectangulararea. usingthe“=”option. Informationofthepixel(s)atthepoint, Forexample,therelationship“Red=Green alongtheline,orwithintheareawillbe +/-20”willcreateamaskshowingpixels automaticallycalculatedandgraphically withredintensitygreaterthanorequalto displayed. Green-20andlessthanorequaltoGreen +20. Valuesofcolorintensityarescaledfrom0to 100%. Toapplytherelationships,click‘MaskImage usingThresholdssetAbove’. Tomovethecrosshair,line,orareadrawnon theimage,usethesmallupanddownarrows Thecriteriayouhaveselectedwillbe thatarealongtherightedgeofthesatellite summarizedintextbelowtheimageofthe image. maskedpixels. Usethesearrowstocreateapoint,line,or ToolsforAnalyzingDigitalImages areaaswell. Selectoneofthreetoolstoanalyzetheimage. InformationontheHistogramTool 1)Thepointtoolexaminestheintensitiesof Thisfeatureissimilartotheresultsgenerated red,green,andbluemeasurementsata usingtheareaanalysistool,exceptthatthe pixelwithintheimage. resulting graph is based on the entire digital 2)Thelinetooldisplaysthecolorintensities image rather than a selected area. foreachpixelalongaline.

38 Global Systems Science Interpreting Digital Images—Teacher Guide Ahistogramisafrequencydistribution(ornumberoftimesavaluefalls withinacertainrange)ofpixelswithinthepictureisgraphedina floatingwindow. Anaverageofthecolorintensitiesdisplayedontheleftedgeofthe graph. Sincethisisafloatingwindow,youmaycomparetheresultsofthearea tooltoseehowrepresentativeitiscomparedtotheentireimage. Youmaycontrolthedatathatisdisplayedbyusingthe‘on’/’off’buttons locatedatthebottomofthefloatingwindow. InformationonGraphTools Whenyougenerateagraphusingthelineorareaanalysistools,youhave theoptiontodisplaythecolorintensitiesofselectedpixelsofthepicture. Byclickingonthebuttonlabeled‘On’adjacenttoeitherRed,Green,or Bluetext,youcanhidetheparticularinformation. Inthecaseofthe line tool,youarehidingordisplayingthecolor intensitiesofpixelsalongtheselectedlinestartingatthebluedot andendingatthereddot. Anaverageoftheintensitiesofthepixelsalongtheselectedlineis displayedontheleftedgeofthegraph. Fortheareatool,thefrequencydistribution(ornumberoftimesavalue fallswithinacertainrange)ofpixelsfallingwithintheselectedarea (box)isgraphedinthelowerrightareaofthewindow. Anaverageofthecolorintensitiesofallthepixelswithintheareais displayedontheleftedgeofthegraph. PageSetupandPrint Toprinttheimagesandgraphs,firstuse ‘PageSetup’intheFileMenu. Select‘landscape’printingandexperiment withthescaleforafullpageprint(ascale of70%worksonourprinters). SavingImages FalseColor Purpose:Thisprogramisvirtuallyidenticaltothe Tosaveavisualizationofthesatelliteimage, ColorPicture software, except that it is designed usethe‘SaveImage’optionlocatedinthe‘File’ to display jpegs of Landsat images available on menu. the United States Geological Survey’s Earthshots NOTE:doNOTusethesamenameasthe website: http://edcwww.cr.usgs.gov/earthshots/ originalsatelliteimagesincethesaved slow/tableofcontents imagewilloverwriteanyfilewiththesame Ratherthancontrollingtheimage’sred,green, namethatalreadyexists. andbluebeingdisplayedbythecomputer display,thesoftwaredisplaystheintensitiesof thesatellitemeasurementsforeachpixel. Inthiscase,thedatabeingdisplayedisthe infrared,visiblered,andvisiblegreen measurementsbytheLandsatsatellite.

Global Systems Science Interpreting Digital Images—Teacher guide 39 SurfaceType Purpose:Explorethereflectioncharacteristicsofinfraredandvisibleredand greenofdifferentmaterialsoftheEarth’ssurface. GettingStarted Click‘SelectSatelliteImage’tochooseasatellitepicturetoexamine. Awindowwillpopuptoallowyoutoselectanyimagesavedonthe computer. Changethevisualenhancement(orvisualization) of the satellite image by clicking the pop up menu labeled ‘Satellite Image Visualization’. ImageswillfirstbedisplayedasatypicalLandsatImagewiththeinfrared datainthecomputer’sredcolorandthevisualredandgreenlightmapped bythecomputer’sgreenandbluecolors,respectively. Separatesatellitesensormeasurementsmaybevisualizedwiththe remainingoptionsthateitherusethecomputercolortypicallyassociated withthesensordataorinshadesofgray. Therearetwoanalysistools. Thepixelanalysistooldisplaystheintensitiesateachpixelonthesatellite imageasyouclickanddragthecursoracrosstheimage. Acrosshairappearsonthescreentohighlightthecursor’slocation. Thenumericalvaluesrepresenttheintensityofanarrowbandsofreflected lightfromtheEarth’ssurface. Intensityvaluesarescaledfrom0to100%. Usethearrowsnexttothexandypixel positionstomovethecrosshairs 1)StandardcolorcompositeofLandsat incrementallyacrosstheimage. imageryinwhichtheintensityofthe Explorethecharacteristicsintensities infraredmeasurementsaredisplayedinthe associatedwithdifferentsurfacefeatures. computerdisplay’sred,thevisiblered displayedinthecomputer’sgreen,andthe Thelineanalysistoolletslinesbedrawnonthe visiblegreendisplayedinthecomputer’s imageinordertocalculatethesizeofsurface blue. features. 2-7)IR,Red,orGreen(ColororGray).Acolor Tobeginaline,clickthecursorontheimage orgrayshadeimageofonlyonesetof andholdthemousekeydownasyoudrag satellitemeasuredintensities. thecursoracrosstheimage. Forexample,agrayshadeimageofIR Whenyoureleasethemousekey,thelinestops displaysthepixel’sIRvalueinallthree changing. colorsofthecomputer’sdisplay. Usethearrowsnexttothexandystartand Grayshadeimagesallowyoutoexaminethe stoppositionstoincrementallychangethe intensitiesofvalueswithoutbiasingyour positionoftheline. sensitivitytored,green,orblue. Thepixellengthofthelinecanbeconverted Usethecolorversiontoillustratethe todistancesusingthescaleprovidedatthe contributionofthesatellitemeasurements lowerrightofeachsatelliteimage. tothestandardcolorsatelliteimagesince Thereare13visualizationstoviewthesatellite theIRisshowninred,andsoon. image.

40 Global Systems Science Interpreting Digital Images—Teacher Guide 8-10) IR v R, IR v G, or R v G: For each pixel, display the difference between two listed satellite measurements. The associated color of the greater value is displayed: IR is displayed as a shade of gray, Red as red, and Green as green. For example, using IR v R, if a pixel has 20% IR, 85% Red, and 65% Green, the difference is 65% to be displayed in the computer’s Red. The brighter the color displayed, the greater the difference between the two measurements; and the darker the color (or closer to black), the smaller the difference between the two measurements. 11-13) Normalized versions of IR v R, IR v G, or R v G: Used to visualize the difference between two sets of satellite measurements, the basic formula is (IntensityA - Intensity B) / (Intensity A + Intensity B). This formula tends to minimize difference in illumination of the surface caused by clouds and slope of the land surface. The color scheme is similar to those used in 8-10: shades of gray are used to indicate where IR is greater, red where Visible Red is greater, and green where Visible Green is greatest. X/YLocations Moving the cursor, line, or rectangle with the control buttons can be confusing unless you understand the mapping of X and Y on the satellite image. Thesizeofthesesatelliteimagesis451pixelswideand325pixelshigh. Theupperleftcorneris(0,0)-thisisveryimportanttoremember! Xcontrolsthehorizontallocationofthecursor,andthemaximumvalueon thescreenis450(0indicatestheleftedgeand450therightedge,so451 pixelsmakeupeachrowoftheimage). Ycontrolstheverticallocationofthecursor,andthevalueoftheupper edgeiswhereY=0.TheloweredgehasY=324.

LandSatAnalysis Purpose:Thisprogramisvirtuallyidenticaltothe GettingHelp ImageAnalysis software, except that it is Therearemanyusefulfeaturestothisprogram, designed to display only jpegs of Landsat images andadditionalinformationisavailableinthe available on the United States Geological ‘Help’menu. Survey’s Earthshots website: GettingStarted http://edcwww.cr.usgs.gov/earthshots/slow/ tableofcontents First,click‘SelectSatelliteImage’. Therefore,ratherthancontrollingtheimage’s Atanytimeyoumayselectanewsatellite red,green,andbluebeingdisplayedbythe imagebyclickingonthe‘SelectNew computerdisplay,thesoftwaredisplaysthe SatelliteImage’button. intensitiesofthesatellitemeasurementsfor Wheneveryouselectanewimage,all eachpixel.Inthiscase,thedatabeingdisplayed featurevaluesareresettodefaultvalues. istheinfrared,visiblered,andvisiblegreen Aftertheimageisselected,awindowwillpop measurementsbytheLandsatsatellite.In upthatasksyoutoenterthenumericalvalueof addition,calculationsautomaticallyincludethe themapscalevaluevisibleinthelowerleft NormalizedDifferenceVegetationIndex. cornerofeachsatelliteimage. Ifyoumakeamistake,click‘Calibrate Distance/AreaTool’.

Global Systems Science Interpreting Digital Images—Teacher guide 41 SelectMethodofScaleCalibration Awindowpopsuptorequestthescaleofthesmallwhitesquareinthelower leftcornerbeentered. NOTEthatifthereisconsiderablewhitearoundtheboxthatispartof thesatelliteimage,theautomatedcalibrationmaybecomeconfused. Checktheresultsbymeasuringthescaleboxwiththelinetool. Ifincorrect,rerunthecalibration(click‘CalibrateDistance/AreaTools’ andselectthe‘ScalePresentinImage’calibrationmethod. Theprogramassumesthatthepixelsaresquareinshapesomeasuringthe distanceinonedirectionisappliedtoalldirections. PageSetupandPrint Toprinttheimagesandgraphs,firstuse‘PageSetup’intheFileMenu.Select ‘landscape’printingandexperimentwiththescaleforafull-pageprint.We havefoundthatascaleof70%worksonourprinters. SavingImages Tosaveavisualizationofthesatelliteimage,usethe‘SaveImage’option locatedinthe‘File’menu. NOTE:doNOTusethesamenameastheoriginalsatelliteimagesince thesavedimagewilloverwriteanyfilewiththesamenamethatalready exists. ExploringSatelliteImages Usethepopupmenubuttonbelowthetext‘DisplayTools’totogglebetween differentdisplaysofthesatelliteimage. Thereare13automaticallycalculated enhancementstoviewthesatelliteimage. 1)RGB=standardcolorcompositeofLandsatimagery5-7)IR,Red,orGreen(Gray).Agrayshadeimage inwhichtheintensityoftheinfrared ofonlyonesetofsatellitemeasuredintensities. measurementsaredisplayedinthecomputer Forexample,agrayshadeimageofIR display’sred,thevisiblereddisplayedinthe displaysthepixel’sIRvalueinallthree computer’sgreen,andthevisiblegreendisplayed colorsofthecomputer’sdisplay. inthecomputer’sblue. Grayshadeimagesallowyoutoexaminethe 2)B&W=blackandwhiteimageoftheRGBimagein intensitieswithoutbiasingyoursensitivity whichtheaverageoftheintensityvaluesthe tored,green,orblue. image’sinfraredandvisibleredandgreenis 8-10)IRvR,IRvG,orRvG:Foreachpixel,display displayedequallyinthecomputerdisplay’sred, thedifferencebetweentwolistedsatellite green,andblue. measurements. 3)NDVI(NormalizedDifferenceVegetationIndex). Theassociatedcolorofthegreatervalueis Displaysacolor-codedscaleofvegetationcover. displayed:IRisdisplayedasashadeofgray, Formoreinformation,seethesectionon Redasred,andGreenasgreen. NormalizedDifferenceVegetationIndexthat Forexample,usingIRvR,ifapixelhas20% followthissection. IR,85%Red,and65%Green,thedifference 4)Mask.Acombinationvisualization/display is65%tobedisplayedinthecomputer’sRed. enhancementandimageanalysistool. Thebrighterthecolor,thegreaterthe Allowsyoutocreatewaystodisplaypixels differencebetweenthetwomeasurements, thatmeetthresholdsyouselect. andthedarkerthecolor(orclosertoblack), Pixelsmeetingcriteriaaredisplayedasblack. thesmallerthedifferencebetweenthetwo Whitepixelsrepresentthosethatdidnotmeet measurements. thecriteria.

42 Global Systems Science Interpreting Digital Images—Teacher Guide 11-13)NormalizedversionsofIRvR,IRvG,orRvG:Usedtovisualizethe differencebetweentwosetsofsatellitemeasurements,thebasicformulais (IntensityA-IntensityB)/(IntensityA+IntensityB). Thisformulatendstominimizedifferenceinilluminationofthesurface causedbycloudsandslopeofthelandsurface. Thecolorschemeissimilartothoseusedin8-10:shadesofgrayare usedtoindicatewhereIRisgreater,redwhereVisibleRedisgreater, andgreenwhereVisibleGreenisgreatest. Click‘ShowOriginalSatelliteImage’andaboxwiththeRGBimagewillappear. Dragthisimagetoanypositiononthecomputerscreen Usethepoint,line,andareaonthisimageaswellastheenhanced satelliteimagedisplayedonthelargerwindow. NormalizedDifferenceVegetationIndex AVegetationIndexisameasureoftheamountofvegetationcoveringthe Earth’ssurface. Healthyvegetationabsorbsvisiblelight,especiallyredlight,andreflects muchoftheinfrared. AsimpleVegetationIndexisbasedonthedifferencebetweenthese intensities. Anotherindex,NDVI,providesmoreconsistentidentificationof vegetation. NDVIstandsfor“NormalizedDifference VegetationIndex”,whichmeansthatthe differencebetweentheintensitiesofthe reflectedinfraredandvisibleredlightare dividedbythesumoftheintensitiesofthetwo lightmeasurements. Thismathematicalmanipulation Valuesthatmeetthecriteriayouselectare compensatesforareasexperiencinghazy coloredin“Black”andvaluesnotmeeting sunshinecomparedtothoseinclearskies. thecriteriaarecoloredin“White.” Dense,healthyvegetationproducesNDVI Toselectacategorytomask,eitherclick valuesnear+1.0. anyofthefourcheckboxesnexttoIR,Red, Baresoilandrockreflectsimilarlevelsof Green,orNDVI(atechniquethatestimates infraredandredlight,sothesesurfaces vegetationcoverwithinthepixel)oruse produceNDVIvaluesnear0. thesmallarrowstochangethemaximum orminimumvaluesassociatedwitheach Clouds,water,andsnowreflectmorevisible category. lightthaninfrared,whichistheoppositeof vegetation,andsoproduceNDVIvaluesnear Ifyouselectmorethanonecategory,the -1.0. maskthatisgeneratedrequiresallcriteria tobemet. InformationontheMaskDisplayFeature AmaskwithIRbetween50-75%andRed Toolforvisualizingandquantifyingthe between25-60%,createsblackpixelsthat relationshipsbetweenintensitiesofinfraredand haveIRbetween50&75%ANDredbetween visibleredandgreenforeachpixelintheimage. 25&60%. Youmayeitherselectarangeofvaluesto Settingcriteriaforarelativerelationship highlight(suchashighlighttheIRintensities betweenintensityvaluesrequiresyouto between50and75%)orrelativeintensities selectdifferentintensities. betweentwosetsofmeasurements(such ashighlighttheIRvaluesthataregreater Ifyouselectarelationship“IR=IR+10”,a thanthegreenvaluesby10unitsof messagewillpopuprequestingyoutoselect intensity). non-matchingvariables.

Global Systems Science Interpreting Digital Images—Teacher guide 43 The“+/-”optionactsasafilterthatallowsyoutosettherangeof valuewhenyouareusingthe“=”option. Forexample,therelationship“Red=Green+/-20”willcreatea maskshowingpixelswithredintensitygreaterthanorequaltoGreen- 20andlessthanorequaltoGreen+20. Toapplytherelationshipsyouhavecreated,clickthebutton“MaskSatellite ImageusingThresholdssetAbove”. Thecriteriayouhaveselectedwillbesummarizedinatextboxbelow theimageofthemaskedpixels. ToolsforAnalyzingSatelliteImages Selectoneofthreetoolstoanalyzethesatelliteimage. 1)The pointtoolexaminestheintensitiesofelectromagnetic measurementsatapixelwithintheimage. 2)Thelinetooldisplaysthesatellitemeasurementsforeachpixelalong aline. 3)Theareatoolcalculatesthefrequencyofoccurrenceofintensities ofpixelswithintheselectedarea. Touseeachtool,clickthecursoratsomepointwithinthesatelliteimage, anddragthecursortoobtainthedesiredpoint,line,orrectangulararea. Informationofthepixel(s)atthepoint,alongtheline,orwithinthe areawillbeautomaticallycalculatedandgraphicallydisplayed. Anotherwaytomovetheanalysistoolsaroundasatelliteimageistouse thesmallupanddownarrowsthatarealongtherightedgeofthelocations ofthepoint,endsofline,orcornersofthearea. Use these arrows to create the point, line, or area. InformationontheHistogramTool Thisfeatureissimilartotheresultsgenerated usingtheareaanalysistool,exceptthatthe vegetationindexofselectedpixelsofthe resultinggraphis based on the entire satellite satelliteimage. image rather than a selected area. Clickonthebuttonlabeled‘On’adjacentto Ahistogramisaplotofthefrequency theIR,Red,Green,orNDVItextinorderto distribution(ornumberoftimesavaluefalls turnonandoffparticulargraphical withinacertainrange)ofpixelswithinthe information. satelliteimageisgraphedinafloating Inthecaseofthelinetool,youarehidingor window. displayingthevaluesofpixelsalongthe Anaverageoftheintensitiesand/or selectedlinestartingatthebluedotand vegetationanalysisofthepixelsisdisplayed endingatthereddot. ontheleftedgeofthegraph. Anaverageoftheintensitiesand/or Sincethisisafloatingwindow,youmay vegetationanalysisofthepixelsalongthe comparetheresultsoftheareatooltosee selectedlineisdisplayedontheleftedge howrepresentativeitiscomparedtothe ofthegraph. entireimage. Fortheareatool,thefrequencydistribution(or Youmaycontrolthedatathatisdisplayedby numberoftimesavaluefallswithinacertain usingthe‘on’/’off’buttonslocatedatthe range)ofpixelsfallingwithintheselectedarea bottomofthefloatingwindow. (box)isgraphedinthelowerrightareaofthe window. InformationonGraphTools Anaverageoftheintensitiesand/or Whenyougenerateagraphusingthelineorarea vegetationanalysisofallthepixelswithin analysistools,youhavetheoptiontodisplay theareaisdisplayedontheleftedgeofthe thevaluesassociatedwiththemeasurementsand graph.

44 Global Systems Science Interpreting Digital Images—Teacher Guide VegetationAnalysis Purpose:ThisprogramissimilartotheLandSatAnalysissoftware,butnowyou mayexploreatime series of 2 or 3 Landsat images side by side. YoumaydisplayonlyjpegsofLandsatimagesavailableontheUnited StatesGeologicalSurvey’sEarthshotswebsite: http:// edcwww.cr.usgs.gov/earthshots/slow/tableofcontents.Thiswebsitehas createdsatelliteimagesovertheexactareabutseparatedbymonthsor years,whichallowyoutoexaminehowtheEarth’svegetationresponds tonaturalandhuman-inducedchangesintheenvironment,suchasMt. St.HelensandChernobyl. GettingHelp Therearemanyusefulfeaturestothisprogram,andadditionalinformationis availableinthe‘Help’menu. GettingStarted First,TYPEthenumberofsatelliteimagestoworkwithinthewhitebox above.Thisnumbermustbeeither2or3. Next,click‘SelectSatelliteImages’. Selectaseriesof2or3satellitepictures. Picktheearliest(oldest)picturefirst,followedbythenextoldest,and themostrecentimagelast. Youwillnotbeallowedtocontinueifyoupickimagesthatarenotofthe sameareaornotinincreasingyear. Afterimagesareselected,awindowwillpopupthatasksyoutoenterthe numericalvalueofthemapscalevaluevisibleinthelowerleftcornerof eachsatelliteimage. ExploringSatelliteImages Usethe‘ChangeEnhancement’buttontotoggle betweenanRGBpictureandaNDVI Movethecursoraroundasatelliteimageinthree enhancement. ways: Allsatellitepictureswillhavethesame 1)Clickthemouseonanareaofinterest, enhancement. 2)Clickanddragthemousetoanareaof PageSetupandPrint interest, Toprinttheimagesandgraphs,firstuse 3)Usethesmallupanddownarrowsalong ‘PageSetup’intheFileMenu.Select‘landscape’ theupper-rightedge.Thesearrowsbecome printingandexperimentwiththescaleforafull- visiblewhenyouselectaPointTool. pageprint.Wehavefoundthatascaleof75% Additionalarrowsappearwhenyouselecta worksonourprinters. LineorAreaTool.Usethesearrowcontrols tomovetheendpointsoflinesorthe ToolsforAnalyzingSatelliteImages opposingcornersofarectangledrawnon Selectoneofthreetoolstoanalyzethesatellite theimages. images.Informationfromeachofsatelliteimage 2)LineAnalysis willbeautomaticallycalculatedanddisplayed. Placethecursorinasatelliteimage,clickand 1)PointAnalysisTool dragthecursortodrawaline. Explorethethevegetationindex(NDVI)ateach NDVIvaluesforpixelsalongthelineare pixelofthesatelliteimages. graphed. Comparethevaluesatthesamelocationoneach Thestartandendofthelinearecolor-coded satelliteimage. (bluestart,redstop). AnaverageNDVIofpixelsalongthelineare calculatedandcolor-codedbytheyearof eachimage.

Global Systems Science Interpreting Digital Images—Teacher guide 45 Movethecursortoeachsatelliteimagetoseeindividuallinesofyearlydata onthegraph. 3)AreaAnalysis Placethecursorinasatelliteimage,clickanddragthecursortodrawa rectangle. NDVIvaluesforpixelsinsidetherectanglesareusedincalculations. Ifmin/maxNDVIvaluesare-1and1,respectively,ahistogramofNDVIvalues withintherectangleareplotted. Bychangingthemin/maxvalues,thepercentofNDVIvaluesbetweenthe selectedrangeisdisplayed. Aswiththelinetool,movethecursortoeachsatelliteimagetoseeindividual linesofyearlydataonthegraph. NormalizedDifferenceVegetationIndex A VegetationIndex isameasureoftheamountofvegetationcoveringthe Earth’ssurface. Healthyvegetationabsorbsvisiblelight,especiallyredlight,andreflects muchoftheinfrared. AsimpleVegetationIndexisbasedonthedifferencebetweentheseintensities. Anotherindex,NDVI,providesmoreconsistentidentificationofvegetation. NDVIstandsfor“NormalizedDifferenceVegetationIndex”,whichmeansthat thedifferencebetweentheintensitiesofthereflectedinfraredandvisiblered lightaredividedbythesumoftheintensitiesofthetwolightmeasurements. Thismathematicalmanipulationcompensatesforareasexperiencinghazy sunshinecomparedtothoseinclearskies. Dense,healthyvegetationproducesNDVIvaluesnear+1.0. Baresoilandrockreflectsimilarlevelsofinfraredandredlight,sothese surfacesproduceNDVIvaluesnear0. Clouds,water,andsnowreflectmorevisiblelightthaninfrared,whichisthe oppositeofvegetation,andsoproduceNDVIvaluesnear-1.0.

46 Global Systems Science Interpreting Digital Images—Teacher Guide Acknowledgements

Wewouldliketothankthetalentedpeoplewhohavereviewedthewritten materials,softwareactivities,and/orhands-onactivities.Theirinsightful commentsandsuggestionshavebeenincorporatedinthisversion.

StaffattheMuseumofScience CarySneider,DavidRabkin,LesleyKennedy,LingHsaio,EmilySimpson, MichaelSchiess,SuzanneSpring,NinaNolan,EllenBusher,LorenStolow, AlissaFlowersNicol,BillWahler,AdetunjiOnamade,MarianneDunne,Daisy Frederick,MarcKlureza,SusanTimberlake,IngeborgEndter,BobBonazoli, MattPacewicz,DavidSittenfeld,EricWorkman,CarolynKirdahy,Maureen McConnell,SueStoessel,DavidCantor-Adams,SharonHorrigan,Henry Robinson,LynnBaum,JeannineTrezvant,RobertGreene,MarionTomusiak, andCathyClemens.

VisitingattheMuseumofScience SteveMcDonald,UMASSBoston;CandaceJulyan,Educator;KathyCunningham andMattAmengual,GISspecialists;MomciloBabic,PlantGeneticist;Beth Nicholson,Chairperson,SavetheHarbor,SavetheBay;TeonEdwards,Remote SensingSpecialistatTERC;CrystalSchaaf,RemoteSensing,Boston University;BillLawler,educationspecialistintechnologyandcomputers; DonaGartrell,PresidentofTheLearningCommunityGroup;DonMcCasland, Educator,BlueHillObservatory,Milton,MA;AbbieNguyen,FenwayHigh School,MA;JackSheridan,ScienceSupervisorforBostonPublicSchools; JodiDavenport,PhDstudentinPerception,MIT;andMaryO’Connor, EnvironmentalDefenseFund

MaineTeachersthroughtheMaineandScienceAlliance, Augusta,Maine PageKeeley,JanreMullins,DaleneDutton,TomStocker,LaurieHaines,Tom Stocker,MichaelG.McGraw,RachelMadison,LaurieSpooner,DebAvalone- King,MarianneDubois,KathyHockman,ShawnCarlson,RalphF.Keyes, KellyDole,MatthewGeary,KimGlidden,SusanKlemmer,StevenKnowles, andHaroldB.Mosher

RemoteSensingSpecialists,AtmosphericandEnvironmentalResearch,Inc., Lexington,MA GaryGustafson,RobertD’Entremont,JenniferHegarty,AlanLipton,Mark Leidner,andRickRosen.

Global Systems Science Interpreting Digital Images—Teacher guide 47 http://edcwww.cr.usgs.gov/earthshots/slow/tableofcontents

A devastating nuclear accident happened at Chernobyl, Ukraine, on 26 April 1986. These images show the area around the nuclear power plant approximately one month after the accident, and six years after the accident. This area is near the common borders of Ukraine, Belarus, and Russia.

The images clearly show farm abandonment. Agriculture appears as a collage of bright red (growing crops) and white (highly reflective bare ground). Many of these areas appear a flat tan-green in 1992, indicating natural vegetation which has taken over the abandoned fields. While the reactor was still on fire, all settlements within 30 km were evacuated, including Pripyat (1986 population 45,000), Chernobyl (1986 population 12,000), and 94 other villages (estimated Chernobyl, Ukraine total population 40,000). As of 1992, this area remained almost 1986 (above), 1992 (below) completely abandoned.

The radiation also affected wild plants and animals around Chernobyl. Pine forests soon died, cattails grew three heads, and wild animals declined in number. But in the coming years, as the short-lived radionuclides decayed and the longer-lived contaminants settled deep into the soil, the wildlife rebounded. Human abandonment also made habitat available for birds, deer, rodents, wolves, boar and other animals. These populations appear to be increasing despite the extraordinarily high mutation rates caused by contamination in the food chain and by one of the highest background radiation levels in the world.3

Satellite images LT5182024008615110 (Landsat 5 TM, 31 May 1986) LT4182024009220810 (Landsat 4 TM, 26 July 1992)

http://edcwww.cr.usgs.gov/earthshots/slow/tableofcontents These images show the rapid growth of Las Vegas, Nevada. This is by far the fastest- growing metropolis in the United States. The population has grown in recent decades as follows: 1964: 127,000 1986: 608,000 1972: 273,000 1992: 863,000 1997: 1,124,000 These are the same kind of standard false-color images that appear throughout Earthshots, simulating color-infrared aerial photographs. Remember “RGB = NRG”: red, green, and blue in the image represent how much near-infrared, red, and green solar energy the ground reflects. As the city expands you can see a sort of landcover succession through human construction. • Pre-construction land appears medium gray-green indicating sparse desert vegetation, reddish soils, and stone. • Construction land appears brighter. Bulldozed soil, bare of vegetation, is very reflective. Western Las Vegas in 1986 (above) and 1992 (below). • A young neighborhood appears medium green (medium green) again, perhaps a bit brighter from all the reflective pavement and roofs. The trees are small, and some developments now conserve water by landscaping with rock and desert plants rather than grass. • An old neighborhood appears dark, brownish red, from the mature trees and more grass. • Golf courses appear bright red because they are the most intense vegetation. • Water appears almost blackbecause at this angle it scatters little light back to the Landsat sensor. Satellite images The 1972, 1986 and 1994 scenes are from the NALC dataset. LM1042035007225790 (Landsat 1 MSS, 13 September 1972) LM5039035008625390 (Landsat 5 MSS, 10 September 1986) LM5039035009225490 (Landsat 5 MSS, 10 September 1992)

48 Global Systems Science Interpreting Digital Images—Teacher Guide