Reviving the American Society for Cybernetics, 1980-1982
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moving Towards a New Urban Systems Science
Ecosystems DOI: 10.1007/s10021-016-0053-4 Ó 2016 Springer Science+Business Media New York 20TH ANNIVERSARY PAPER Moving Towards a New Urban Systems Science Peter M. Groffman,1* Mary L. Cadenasso,2 Jeannine Cavender-Bares,3 Daniel L. Childers,4 Nancy B. Grimm,5 J. Morgan Grove,6 Sarah E. Hobbie,3 Lucy R. Hutyra,7 G. Darrel Jenerette,8 Timon McPhearson,9 Diane E. Pataki,10 Steward T. A. Pickett,11 Richard V. Pouyat,12 Emma Rosi-Marshall,11 and Benjamin L. Ruddell13 1Department of Earth and Environmental Sciences, City University of New York Advanced Science Research Center and Brooklyn College, New York, New York 10031, USA; 2Department of Plant Sciences, University of California, Davis, California 95616, USA; 3Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA; 4School of Sustain- ability, Arizona State University, Tempe, Arizona 85287, USA; 5School of Life Sciences and Global Institute of Sustainability, Arizona State University, Tempe, Arizona 85287, USA; 6USDA Forest Service, Baltimore Field Station, Baltimore, Maryland 21228, USA; 7Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA; 8Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA; 9Urban Ecology Lab, Environmental Studies Program, The New School, New York, New York 10003, USA; 10Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA; 11Cary Institute of Ecosystem Studies, Millbrook, New York 12545, USA; 12USDA Forest Service, Research and Development, District of Columbia, Washington 20502, USA; 13School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86001, USA ABSTRACT Research on urban ecosystems rapidly expanded in linchpins in the further development of sustain- the 1990s and is now a central topic in ecosystem ability science and argue that there is a strong need science. -
Guide to the Systems Engineering Body of Knowledge (Sebok) Version 1.3
Guide to the Systems Engineering Body of Knowledge (SEBoK) version 1.3 Released May 30, 2014 Part 2: Systems Please note that this is a PDF extraction of the content from www.sebokwiki.org Copyright and Licensing A compilation copyright to the SEBoK is held by The Trustees of the Stevens Institute of Technology ©2014 (“Stevens”) and copyright to most of the content within the SEBoK is also held by Stevens. Prominently noted throughout the SEBoK are other items of content for which the copyright is held by a third party. These items consist mainly of tables and figures. In each case of third party content, such content is used by Stevens with permission and its use by third parties is limited. Stevens is publishing those portions of the SEBoK to which it holds copyright under a Creative Commons Attribution-NonCommercial ShareAlike 3.0 Unported License. See http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US for details about what this license allows. This license does not permit use of third party material but gives rights to the systems engineering community to freely use the remainder of the SEBoK within the terms of the license. Stevens is publishing the SEBoK as a compilation including the third party material under the terms of a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0). See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details about what this license allows. This license will permit very limited noncommercial use of the third party content included within the SEBoK and only as part of the SEBoK compilation. -
Warren Mcculloch and the British Cyberneticians
Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. -
What Can Architecture Learn from Ecological Systems?
Interweaving Architecture and Ecology – A Theoretical Perspective Or: What can architecture learn from ecological systems? Batel Dinur Abstract This paper is part of an on-going research which attempts to reveal whether an analogy between ecology and architecture can benefit architectural design and if so, then in what ways. The analogy is done through an interpretation of three ecological principles which define the organization of living systems and then attempts to reveal how these three ecological principles may be implemented in architecture. The paper firstly describes the problem at hand and the need for a new model for architecture which may be better informed by the study of ecological systems. It then elaborates on the definition of the three ecological principles (fluctuations, stratification, and interdependence) which were chosen for investigation because they define the organization of living systems and therefore may be relevant as a basis for an analogy between ecology and architecture. The paper then presents brief examples of the current and possible further realization of these ecological principles in architecture. Keywords: ecology, architecture, living systems’ organization, process, fluctuations, stratification, interdependence. Introduction In this paper I will try to illuminate how an ecological understanding of systems may contribute to architectural design. An ‘ecological understanding of systems’ means to understand how the components of a living system function together and make the system what it is. My question is whether a better understanding of these living processes may move architecture away from a perceived obsession with the static object, and into a more dynamic system? My argument is that a truly environmental architecture cannot be reached through the refinement of the static object alone, but must address complex interactions, and that these might be best informed through a study of ecology. -
Toward a New Science of Information
Data Science Journal, Volume 6, Supplement, 7 April 2007 TOWARD A NEW SCIENCE OF INFORMATION D Doucette1*, R Bichler 2, W Hofkirchner2, and C Raffl2 *1 The Science of Information Institute, 1737 Q Street, N.W. Washington, D.C. 20009, USA Email: [email protected] 2 ICT&S Center, University of Salzburg - Center for Advanced Studies and Research in Information and Communication Technologies & Society, Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria Email: [email protected], [email protected], [email protected] ABSTRACT The concept of information has become a crucial topic in several emerging scientific disciplines, as well as in organizations, in companies and in everyday life. Hence it is legitimate to speak of the so-called information society; but a scientific understanding of the Information Age has not had time to develop. Following this evolution we face the need of a new transdisciplinary understanding of information, encompassing many academic disciplines and new fields of interest. Therefore a Science of Information is required. The goal of this paper is to discuss the aims, the scope, and the tools of a Science of Information. Furthermore we describe the new Science of Information Institute (SOII), which will be established as an international and transdisciplinary organization that takes into consideration a larger perspective of information. Keywords: Information, Science of Information, Information Society, Transdisciplinarity, Science of Information Institute (SOII), Foundations of Information Science (FIS) 1 INTRODUCTION Information is emerging as a new and large prospective area of study. The notion of information has become a crucial topic in several emerging scientific disciplines such as Philosophy of Information, Quantum Information, Bioinformatics and Biosemiotics, Theory of Mind, Systems Theory, Internet Research, and many more. -
1 Umpleby Stuart Reconsidering Cybernetics
UMPLEBY STUART RECONSIDERING CYBERNETICS The field of cybernetics attracted great attention in the 1950s and 1960s with its prediction of a Second Industrial Revolution due to computer technology. In recent years few people in the US have heard of cybernetics (Umpleby, 2015a, see Figures 1 and 2 at the end of Paper). But a wave of recent books suggests that interest in cybernetics is returning (Umpleby and Hughes, 2016, see Figure at the end of Paper). This white paper reviews some basic ideas in cybernetics. I recommend these and other ideas as a resource for better understanding and modeling of social systems, including threat and response dynamics. Some may claim that whatever was useful has already been incorporated in current work generally falling under the complexity label, but that is not the case. Work in cybernetics has continued with notable contributions in recent years. Systems science, complex systems, and cybernetics are three largely independent fields with their own associations, journals and conferences (Umpleby, 2017). Four types of descriptions used in social science After working in social science and systems science for many years I realized that different academic disciplines use different basic elements. Economists use measurable variables such as price, savings, GDP, imports and exports. Psychologists focus on ideas, concepts and attitudes. Sociologists and political scientists focus on groups, organizations, and coalitions. Historians and legal scholars emphasize events and procedures. People trained in different disciplines construct different narratives using these basic elements. One way to reveal more of the variety in a social system is to create at least four descriptions – one each using variables, ideas, groups, and events (See the figures and tables in Medvedeva & Umpleby, 2015). -
Information Systems Foundations Theory, Representation and Reality
Information Systems Foundations Theory, Representation and Reality Information Systems Foundations Theory, Representation and Reality Dennis N. Hart and Shirley D. Gregor (Editors) Workshop Chair Shirley D. Gregor ANU Program Chairs Dennis N. Hart ANU Shirley D. Gregor ANU Program Committee Bob Colomb University of Queensland Walter Fernandez ANU Steven Fraser ANU Sigi Goode ANU Peter Green University of Queensland Robert Johnston University of Melbourne Sumit Lodhia ANU Mike Metcalfe University of South Australia Graham Pervan Curtin University of Technology Michael Rosemann Queensland University of Technology Graeme Shanks University of Melbourne Tim Turner Australian Defence Force Academy Leoni Warne Defence Science and Technology Organisation David Wilson University of Technology, Sydney Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/info_systems02_citation.html National Library of Australia Cataloguing-in-Publication entry Information systems foundations : theory, representation and reality Bibliography. ISBN 9781921313134 (pbk.) ISBN 9781921313141 (online) 1. Management information systems–Congresses. 2. Information resources management–Congresses. 658.4038 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Brendon McKinley with logo by Michael Gregor Authors’ photographs on back cover: ANU Photography Printed by University Printing Services, ANU This edition © 2007 ANU E Press Table of Contents Preface vii The Papers ix Theory Designing for Mutability in Information Systems Artifacts, Shirley Gregor and Juhani Iivari 3 The Eect of the Application Domain in IS Problem Solving: A Theoretical Analysis, Iris Vessey 25 Towards a Unied Theory of Fit: Task, Technology and Individual, Michael J. -
A New Transdisciplinary Paradigm for the Study of Complex Systems?", In: Self-Steering and Cognition in Complex Systems, Heylighen F., Rosseel E
Heylighen F. (1990): "A New Transdisciplinary Paradigm for the Study of Complex Systems?", in: Self-Steering and Cognition in Complex Systems, Heylighen F., Rosseel E. & Demeyere F. (ed.), (Gordon and Breach, New York), p. 1-16. A NEW TRANSDISCIPLINARY PARADIGM FOR THE STUDY OF COMPLEX SYSTEMS? Francis Heylighen Transdisciplinary Research Group Free University of Brussels ABSTRACT: two paradigms for studying the relation between autonomy and cognition are reviewed and contrasted: the "artificial" paradigm, which sees autonomous systems as linear, information-processing organizations, and the "autopoietic" paradigm, which sees them as circular, self-producing organizations. It is argued that these two paradigms are not inconsistent but complementary, and that they can be synthesized in an encompassing paradigm based on the self-organization of complex systems through variation-and-selective retention, leading to the emergence of relatively autonomous subsystems. Some implications of such an encompassing paradigm on the level of science, technology, individual persons and society are outlined, with reference to the papers in this collection. It is argued that the further development of such a transdisciplinary approach will lead to a new "science of complexity". 1. Introduction In the preface to this book it was argued that some recent trends in different disciplines seem to converge around the concepts of self-organization, autonomy and cognition. Whether these developments really announce the emergence of a new paradigm remains to be proven. Only time can tell. In this position paper, I will assume that they do, and investigate where this new paradigm would be coming from, and where it might be heading to. -
Artificial Intelligence
Intelligence, Artificial Intelligence and Wisdom in the Global Sustainable Information Society Fourth International Conference on Philosophy of Information, IS4SI Summit Berkeley 2019, UC Berkeley, 2-6 June 2019 Wolfgang Hofkirchner Director, GSIS – The Institute for a Global Sustainable Information Society, Vienna Contents 1 A complex systems view 1.1 The Great Bifurcation 1.2 The Transformation into a Global Sustainable Information Society 2 Conditions for thriving and surviving 2.1 Globality 2.2 Sustainability 2.3 Informationality 3 Intelligence, AI, and wisdom 1 A complex systems view Seen from a complex systems view, the evolution of mankind faces a Great Bifurcation. Global challenges might cause the extermination of mankind. At the same time, global challenges can be mastered through a transformation into a global sustainable information society. 1.1 The Great Bifurcation Civilisation at the breakthrough to a higher level crossroads (rise of complexity): integration of differentiated, interdependent social systems into a single meta-/suprasystem – Global Sustainable Information global space of possible Society challenges trajectories (multicrisis in all techno-, eco-, social breakdown (decline of complexity): subsystems) impossible trajectories disintegration and tipping point* falling apart of civilisation * Ervin László 1.2 Transformation Metasystem transition* agency system n interacting agency (proto-element) (network) * Francis Heylighen et al. system n+1 (proto-element) 1.2 Transformation Metasystem …organisational transition -
Towards a Cybernetic Foundation for Natural Resource Governance
Towards a Cybernetic Foundation for Natural Resource Governance A Thesis Presented to the Academic Faculty by Talha Manzoor In Partial Fullfilment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering Supervisor: Abubakr Muhammad (LUMS) Co-supervisor: Elena Rovenskaya (IIASA) arXiv:1803.09369v1 [cs.SY] 20 Mar 2018 Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences December 2017 © 2017 by Talha Manzoor To Marwa and her never-ending quest for adventure. Abstract This study explores the potential of the cybernetic method of inquiry for the problem of natural resource governance. The systems way of thinking has already enabled scientists to gain considerable headway in framing global environmental challenges. On the other hand, technical solutions to environmental problems have begun to show significant promise, driven by the advent of technology and its increased proliferation in coupled human and natural systems. Such settings lie on the interface of engineering, social and environmental sciences, and as such, require a common language in order for natural resources to be studied, managed and ultimately sustained. In this dissertation, we argue that the systems theoretic tradition of cybernetics may provide the necessary common ground for examining such systems. After discussing the relevance of the cybernetic approach to natural resource governance, we present a mathematical model of resource consumption, grounded in social psychological research on consumer behavior. We also provide interpretations of the model at various levels of abstraction in the social network of the consuming population. We demonstrate the potential of the model by examining it in various theoretic frameworks which include dynamical systems, optimal control theory, game theory and the theory of learning in games. -
The Applications of Systems Science
The Applications of Systems Science Understanding How the World Works and How You Work In It Motivating Question • What does it mean to UNDERSTAND? – Feeling of understanding – listening to a lecture or reading a book – Using understanding – solving a problem or creating an artifact – Understanding processes – predicting an outcome Understanding • Various categories of what we call knowledge – Knowing What*: facts, explicit, episodic knowledge • Conscious remembering – Knowing How: skills, tacit knowledge • Performance of tasks, reasoning – Knowing That: concepts, relational knowledge • Connecting different concepts – Knowing Why: contexts, understanding • Modeling and explaining • Thinking is the dynamics of the interactions between these various categories • Competencies based on strength of cognitive capabilities * Includes knowing when and where The System of Knowledge and Knowing An example of a “Concept Map” Knowing Why contexts modeling understanding explaining Thinking remembering connecting performing Knowing That concepts relational knowledge Knowing What Knowing How facts skills explicit knowledge tacit knowledge Perceiving, Learning, & Memory recognizing encoding linking recalling Cognitive Capabilities Thinking • Thinking capabilities depend on general cognition models – Critical thinking • Skepticism, recognizing biases, evidence-based, curiosity, reasoning – Scientific thinking • Critical thinking + testing hypotheses, analyzing evidence, formal modeling – Systems thinking • Scientific thinking + holistic conceptualization, -
What Is Systems Theory?
What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A.