Moving Towards a New Urban Systems Science

Total Page:16

File Type:pdf, Size:1020Kb

Moving Towards a New Urban Systems Science Ecosystems DOI: 10.1007/s10021-016-0053-4 Ó 2016 Springer Science+Business Media New York 20TH ANNIVERSARY PAPER Moving Towards a New Urban Systems Science Peter M. Groffman,1* Mary L. Cadenasso,2 Jeannine Cavender-Bares,3 Daniel L. Childers,4 Nancy B. Grimm,5 J. Morgan Grove,6 Sarah E. Hobbie,3 Lucy R. Hutyra,7 G. Darrel Jenerette,8 Timon McPhearson,9 Diane E. Pataki,10 Steward T. A. Pickett,11 Richard V. Pouyat,12 Emma Rosi-Marshall,11 and Benjamin L. Ruddell13 1Department of Earth and Environmental Sciences, City University of New York Advanced Science Research Center and Brooklyn College, New York, New York 10031, USA; 2Department of Plant Sciences, University of California, Davis, California 95616, USA; 3Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA; 4School of Sustain- ability, Arizona State University, Tempe, Arizona 85287, USA; 5School of Life Sciences and Global Institute of Sustainability, Arizona State University, Tempe, Arizona 85287, USA; 6USDA Forest Service, Baltimore Field Station, Baltimore, Maryland 21228, USA; 7Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA; 8Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA; 9Urban Ecology Lab, Environmental Studies Program, The New School, New York, New York 10003, USA; 10Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA; 11Cary Institute of Ecosystem Studies, Millbrook, New York 12545, USA; 12USDA Forest Service, Research and Development, District of Columbia, Washington 20502, USA; 13School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86001, USA ABSTRACT Research on urban ecosystems rapidly expanded in linchpins in the further development of sustain- the 1990s and is now a central topic in ecosystem ability science and argue that there is a strong need science. In this paper, we argue that there are two for a new initiative in urban systems science to critical challenges for ecosystem science that are address these challenges and catalyze the next rooted in urban ecosystems: (1) predicting or wave of fundamental advances in ecosystem sci- explaining the assembly and function of novel ence, and more broadly in interdisciplinary and communities and ecosystems under altered envi- transdisciplinary science. ronmental conditions and (2) refining under- standing of humans as components of ecosystems Key words: community assembly; ecosystem in the context of integrated social-ecological sys- function; evolution; social science; sustainability; tems. We assert that these challenges are also urban. INTRODUCTION Ecosystem-scale research on urban ecosystems has Received 25 April 2016; accepted 13 September 2016; expanded rapidly since the 1990s (McDonnell and Author contributions Peter M. Groffman wrote the first draft of the Pickett 1993; Alberti and others 2003) and is now a paper based on input from numerous colleagues in the Baltimore and widely accepted component of ecosystem science Phoenix U.S. National Science Foundation Funded Urban Long Term (Weathers and others 2016). This emergence was Ecological Research projects. Other authors reviewed the manuscript and provided text on specific aspects. driven by the recognition that urban, suburban, *Corresponding author; e-mail: [email protected] P. M. Groffman and others and exurban ecosystems are increasingly where analyses (Boyden and others 1981; Baker and others people are living, consuming resources, and pro- 2001) that broadened the focus of urban ecosystems ducing waste. Urban ecosystems thus have distinct research to include consequences of a city’s resource ecological characteristics and important environ- use for regional to global processes. mental impacts (Grimm and others 2008a, b); and However, interpreting results from urban gradi- they provide unique and powerful opportunities ent studies is complicated by the multiple factors for basic science advances in ecosystem science that covary along these gradients (McDonnell and (Pickett and others 2011; McPhearson and others Hahs 2008). Further, concerns about the large 2016). More practically, bringing ecological ap- number of natural and human factors influencing proaches to challenges associated with urbaniza- ecosystem processes and biotic community assem- tion can point towards solutions to some of the bly along such gradients hindered extrapolation to most pressing problems in environmental science broader areas of natural and semi-natural ecosys- (Childers and others 2014). tems. Now, an improved ability to parse diverse After 25 years of research in urban ecology, we factors affecting community assembly (Swan and face exciting but challenging opportunities in this others 2011; Knapp and others 2012) and the discipline. In particular, there are two critical chal- emergence of ‘‘novel’’ communities and ecosys- lenges for ecosystem science that are rooted in urban tems in many places, that is, assemblages of ecosystems: (1) understanding the assembly and organisms and environmental conditions that have function of novel ecological communities and not necessarily evolved and assembled in the ab- ecosystems under novel environmental conditions sence of human action over long periods of time and (2) refining understanding of humans as com- (Hobbs and others 2014) has rekindled interest in ponents of ecosystems to create a deeper and more using urban areas as sentinels of ecosystem re- useful understanding of human–environment sponse to global change. The functions of novel interactions in the context of integrated social-eco- ecosystems are unknown in many respects and logical systems. These challenges are linchpins in the addressing this gap is a frontier challenge in further development of sustainability science, a ecosystem science over the next 20–50 years. problem-driven interdisciplinary field dealing with The presence of novel ecosystems in urban areas the interactions between human and environmen- thus represents an excellent opportunity to study tal systems that link knowledge to action to advance the assembly of novel communities and ecosystem the development of social-ecological systems that function under environmental conditions repre- are ecologically sound, socially equitable, and eco- sentative of and/or relevant to the new climates nomically viable (Matson and others 2016). There is emerging due to global climate change. It is not a strong need for new initiatives in urban systems clear if the often hyper-diverse mixtures of culti- science to address these challenges and catalyze the vated and spontaneously establishing species that next wave of fundamental advances in ecosystem include escaped cultivars, introduced weeds, and and environmental science. remnant or naturally establishing native species will function similarly to the ecosystems that urban systems have largely replaced. Moreover, there is THE ‘‘COMMUNITIES OF TOMORROW’’ ARE high potential for these novel ecosystems to spread BEING ASSEMBLED TODAY AT AN URBAN into surrounding non-urban regions and to influ- LOCATION NEAR YOU ence the composition, diversity, and evolution of the continental flora and its ecosystem functions Much of the early work on urban ecosystems was (Johnson and others 2015; McDonnell and Hahs driven by the idea that urban environmental condi- 2015). Indeed, it is likely that areas at the ‘‘wild- tions, with elevated temperatures, atmospheric CO2 land-(ex)urban interface’’ with agricultural and levels, nitrogen (N) deposition and pollutants (for less human-dominated ecosystems (Radeloff and example, ozone, heavy metals), dramatically altered others 2005) are where the communities and water balances, invasive species introductions, and ecosystems that will dominate the continent over rapid timescales of transition, were a useful analog the next 100 years are being assembled. Critically, for future environmental conditions. Early studies the linkage of biodiversity and community struc- along urban to rural gradients addressed these factors ture with ecosystem function and services is even (McDonnell and Pickett 1990; Pouyat and McDon- more uncertain in urban areas than in natural nell 1991; Pouyat and others 1995) and also provided areas, due to their novel composition and envi- a platform for larger-scale urban ‘‘footprint’’ analyses ronment. Hence, a focus on novel ecosystem (Luck and others 2001) and for whole-city flux assemblage, its drivers, and its consequences should Moving Towards a New Urban Systems Science facilitate fundamental advances in our ability to sumption, decomposition, nutrient cycling) in understand and predict the structure and function these novel ecosystems will produce fundamental of ecosystems in a rapidly changing world. information on fluxes of carbon, water, and nutri- In addition to terrestrial environments, urban areas ents over large areas of the earth. However, also provide analogs—even harbingers—for aquatic understanding the dynamics of these systems from ecosystems of the future. The widespread ‘‘urban a theoretical and mechanistic perspective will be stream syndrome’’ that derives from the physical challenging. How will organisms that have not degradation of urban stream channels due to in- evolved together over long periods of time interact creased high flows (Walsh and others 2005) involves with the environment and each other to produce changes in nutrient loads and the presence of a wide functional
Recommended publications
  • Warren Mcculloch and the British Cyberneticians
    Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him.
    [Show full text]
  • 1 Umpleby Stuart Reconsidering Cybernetics
    UMPLEBY STUART RECONSIDERING CYBERNETICS The field of cybernetics attracted great attention in the 1950s and 1960s with its prediction of a Second Industrial Revolution due to computer technology. In recent years few people in the US have heard of cybernetics (Umpleby, 2015a, see Figures 1 and 2 at the end of Paper). But a wave of recent books suggests that interest in cybernetics is returning (Umpleby and Hughes, 2016, see Figure at the end of Paper). This white paper reviews some basic ideas in cybernetics. I recommend these and other ideas as a resource for better understanding and modeling of social systems, including threat and response dynamics. Some may claim that whatever was useful has already been incorporated in current work generally falling under the complexity label, but that is not the case. Work in cybernetics has continued with notable contributions in recent years. Systems science, complex systems, and cybernetics are three largely independent fields with their own associations, journals and conferences (Umpleby, 2017). Four types of descriptions used in social science After working in social science and systems science for many years I realized that different academic disciplines use different basic elements. Economists use measurable variables such as price, savings, GDP, imports and exports. Psychologists focus on ideas, concepts and attitudes. Sociologists and political scientists focus on groups, organizations, and coalitions. Historians and legal scholars emphasize events and procedures. People trained in different disciplines construct different narratives using these basic elements. One way to reveal more of the variety in a social system is to create at least four descriptions – one each using variables, ideas, groups, and events (See the figures and tables in Medvedeva & Umpleby, 2015).
    [Show full text]
  • The Applications of Systems Science
    The Applications of Systems Science Understanding How the World Works and How You Work In It Motivating Question • What does it mean to UNDERSTAND? – Feeling of understanding – listening to a lecture or reading a book – Using understanding – solving a problem or creating an artifact – Understanding processes – predicting an outcome Understanding • Various categories of what we call knowledge – Knowing What*: facts, explicit, episodic knowledge • Conscious remembering – Knowing How: skills, tacit knowledge • Performance of tasks, reasoning – Knowing That: concepts, relational knowledge • Connecting different concepts – Knowing Why: contexts, understanding • Modeling and explaining • Thinking is the dynamics of the interactions between these various categories • Competencies based on strength of cognitive capabilities * Includes knowing when and where The System of Knowledge and Knowing An example of a “Concept Map” Knowing Why contexts modeling understanding explaining Thinking remembering connecting performing Knowing That concepts relational knowledge Knowing What Knowing How facts skills explicit knowledge tacit knowledge Perceiving, Learning, & Memory recognizing encoding linking recalling Cognitive Capabilities Thinking • Thinking capabilities depend on general cognition models – Critical thinking • Skepticism, recognizing biases, evidence-based, curiosity, reasoning – Scientific thinking • Critical thinking + testing hypotheses, analyzing evidence, formal modeling – Systems thinking • Scientific thinking + holistic conceptualization,
    [Show full text]
  • Biological and Environmental Systems Science
    Biological and Environmental Systems Science Oak Ridge National Laboratory’s (ORNL’s) Biological and Environmental Systems Science Directorate (BESSD) leads convergence research in biology, ecology, 145 engineering, data discovery, physical sciences, and computing to advance Scientists and engineers US competitiveness in the global bioeconomy and Earth system sustainability. Our researchers collaborate with experts across the Laboratory and in industry 20 Research and academia to advance renewable energy solutions, improve Earth system groups models, and push the frontiers of systems and synthetic biology. Focus areas include understanding how genes influence ecosystem-level processes; learning more about how biodiversity shapes the world 1,689 around us; developing novel, secure biodesign tools and testbeds for Journal publications in enzyme engineering; applying the world’s fastest supercomputers to the past 5 years transform biological and environmental data into knowledge; advancing signature technologies for dynamic characterization of complex biological and environmental systems; and applying emerging capabilities that 38 promise to transform how science is done through automated, data-rich, and Patents in the past 5 years interconnected systems. Through our R&D, we aim to strengthen the nation’s economic competitiveness, 4 enable resilient and sustainable economies, and facilitate stewardship of managed Governor’s and natural resources. Chairs “We harness next-generation tools in biology, ecology, data analytics, neutron, and computational sciences to translate fundamental understanding into models that advance scientific discovery.” Stan Wullschleger, Associate Laboratory Director Our Research Environmental Sciences—Our researchers expand scientific knowledge and develop innovative strategies and technologies that help sustain Earth’s natural resources. Biosciences—Our scientists advance knowledge discovery and develop technology to characterize and engineer complex biological systems that benefit the environment and our bioeconomy.
    [Show full text]
  • What IS Systems Science?
    What is Systems Science? Systems Science constitutes a somewhat fuzzily defined academic domain, that touches virtually all traditional disciplines, from mathematics, technology and biology to philosophy and the social sciences. It is more specifically related to the recently developing "sciences of complexity", including AI, neural networks, dynamical systems, chaos, and complex adaptive systems. Systems science argues that however complex or diverse the world that we experience, we will always find different types of organization in it, and such organization can be described by concepts and principles which are independent from the specific domain at which we are looking. Hence, if we would uncover those general laws, we would be able to analyze and solve problems in any domain, pertaining to any type of system. The systems approach distinguishes itself from the more traditional analytic approach by emphasizing the interactions and connectedness of the different components of a system. Although the systems approach in principle considers all types of systems, it in practices focuses on the more complex, adaptive, self-regulating systems which we might call "cybernetic". Many of the concepts used by system scientists come from the closely related approach of cybernetics: information, control, feedback, communication... In its present incarnation of "second- order cybernetics", its emphasis is on how observers construct models of the systems with which they interact*. Systems theory studies organization independent of the substrate in which it is embodied and is focused on the structure of systems and their models. ... from Principia Cybernetica Web http://pespmc1.vub.ac.be/ * This interaction demands the study of uncertainty, complexity, knowledge discovery, informatioin, decision making, formal concept analysis, dynamics and evolution.
    [Show full text]
  • Developmental Systems Science 1
    DEVELOPMENTAL SYSTEMS SCIENCE 1 Developmental Systems Science: Exploring the Application of Systems Science Methods to Developmental Science Questions Manuscript #: 8(1)_1 Date: October 27, 2010 Running head: Developmental Systems Science Urban, J.B., Osgood, N., & Mabry, P. (2011). Developmental systems science: Exploring the application of non- linear methods to developmental science questions. Research in Human Development, 8(1), 1-25. doi: 10.1080/15427609.2011.549686 DEVELOPMENTAL SYSTEMS SCIENCE 2 Abstract Developmental science theorists fully acknowledge the wide array of complex interactions between biology, behavior, and environment that together give rise to development. However, despite this conceptual understanding of development as a system, developmental science has not fully applied analytic methods commensurate with this systems perspective. This paper provides a brief introduction to systems science, an approach to problem-solving that involves the use of methods especially equipped to handle complex relationships and their evolution over time. Moreover, we provide a rationale for why and how these methods can serve the needs of the developmental science research community. A variety of developmental science theories are reviewed and the need for systems science methodologies is demonstrated. This is followed by an abridged primer on systems science terminology and concepts, with specific attention to how these concepts relate to similar concepts in developmental science. Finally, an illustrative example is presented to demonstrate the utility of systems science methodologies. We hope that this article inspires developmental scientists to learn more about systems science methodologies and to begin to use them in their work. Urban, J.B., Osgood, N., & Mabry, P. (2011). Developmental systems science: Exploring the application of non- linear methods to developmental science questions.
    [Show full text]
  • Systems Theory"
    General By the same author: System Modern Theories of Development (in German, English, Spani~h) Nikolaus von Kues Theory Lebenswissenschaft und Bildung Theoretische Biologie J Foundations, Development, Applications Das Gefüge des Lebens Vom Molekül zur Organismenwelt Problems of Life (in German, English, French, Spanish, Dutch, Japanese) Auf den Pfaden des Lebens I by Ludwig von Bertalanffy Biophysik des Fliessgleichgewichts t Robots, Men and Minds University of Alberta Edmonton) Canada GEORGE BRAZILLER New York MANIBUS Nicolai de Cusa Cardinalis, Gottfriedi Guglielmi Leibnitii, ]oannis Wolfgangi de Goethe Aldique Huxleyi, neenon de Bertalanffy Pauli, S.J., antecessoris, cosmographi Copyright © 1968 by Ludwig von Bertalanffy All rights in this hook are reserved. For information address the publisher, George Braziller, lnc. One Park Avenue New York, N.Y. 10016 Foreword The present volume appears to demand some introductory notes clarifying its scope, content, and method of presentation. There is a large number of texts, monographs, symposia, etc., devoted to "systems" and "systems theory". "Systems Science," or one of its many synonyms, is rapidly becoming part of the estab­ lished university curriculum. This is predominantly a develop­ ment in engineering science in the broad sense, necessitated by the complexity of "systems" in modern technology, man-machine relations, programming and similar considerations which were not felt in yesteryear's technology but which have become im­ perative in the complex technological and social structures of the modern world. Systems theory, in this sense, is preeminently a mathematica! field, offering partly novel and highly sophisti­ cated techniques, closely linked with computer science, and essentially determined by the requirement to cope with a new sort of problem that has been appearing.
    [Show full text]
  • Two Kinds of General Theories in Systems Science
    TWO KINDS OF GENERAL THEORIES IN SYSTEMS SCIENCE Stuart A. Umpleby Department of Management Science George Washington University Washington, DC 20052 USA January 2001 Presented at the American Society for Cybernetics conference Vancouver, Canada, May 26-28, 2001 TWO KINDS OF GENERAL THEORIES IN SYSTEMS SCIENCE STUART A. UMPLEBY Department of Management Science George Washington University Washington, DC 20052 USA ABSTRACT A key tenet of the philosophy of science is that science progresses when a more general theory is formulated. That is, an aim of science is to explain as many phenomena as possible with as few statements as possible. This idea, that more general theories are preferred over more specialized theories, lies at the heart of systems science. But are there different ways in which a theory can be more general? Is there a tradeoff between universality and testability? Does increasing generalization lead to a loss of information and utility? An examination of several principles from systems theory and cybernetics suggests three conclusions: there are two types of general theories; general theories requires "domain specific knowledge" to make the connection between theory and experiment or between theory and practice; and theories which are more general than those formulated in the traditional disciplines can be effective at facilitating communication among disciplines. 1. INTRODUCTION How does scientific knowledge develop? Is knowledge in systems science different from knowledge in other scientific fields? If it is different, in what way is it different? Are the systems sciences a revolution in one or more previous sciences, the addition of a new domain of inquiry, or a new type of inquiry lying perhaps between mathematics and the sciences? Karl Popper claimed that science advances by conjectures and refutations, and he preferred bold conjectures to more modest conjectures.
    [Show full text]
  • Systems, Science, and Study
    1 Systems, Science, and Study The chapter introduces the conceptual framework for the book, by addressing several major questions: What exactly is geographic information, and why is it important? What is special about it? What is information generally, and how does it relate to data, evidence, knowledge, wisdom, and understanding? What kinds of decisions make use of geographic information? What is a geographic information system (GIS)? What is geographic information science, and how does it relate to the use of GIS for scientific purposes? How do companies make money from GIS? LEARNING OBJECTIVES Know definitions of the terms used throughout the book, including GIS itself; Be familiar with a brief history of GIS; Recognize the sometimes invisible roles of GIS in everyday life, and the roles of GIS in business; Understand the significance of geographic information science, and how it relates to geographic information systems; Understand the many impacts GIS is having on society, and the need to study those impacts. Chapter 1 Systems, Science and Study 5 KEY WORDS AND CONCEPTS Knowing about ‗where‘; geographic problems; scale/detail; science and practical problem solving; spatial is special; the sequence data/information/evidence/knowledge/wisdom; knowing how; GIS roles; GIS history; Internet and GIS; GIS as several businesses; ‗systems‘, ‗science‘ and ‗studies‘ OUTLINE 1.1 Introduction: Why Does GIS matter? 1.2 Data, Information, Knowledge, Evidence, Wisdom 1.3 Systems and Science 1.4 A Brief History of GIS 1.5 Views of GIS 1.6 The Business of GIS 1.7 GISystems, GIScience, and GIStudies 1.8 GIS and the Study of Geography CHAPTER SUMMARY 1.1 Introduction: Why does GIS matter? GIS are a special class of information systems that keep track not only of events, activities, and things, but also of where these events, activities, and things happen or exist.
    [Show full text]
  • SYSTEMS SCIENCE and CYBERNETICS – Vol
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - Systems Science and Cybernetics: The Long Road to World Sociosystemicity - Francisco Parra-Luna SYSTEMS SCIENCE AND CYBERNETICS: THE LONG ROAD TO WORLD SOCIOSYSTEMICITY Francisco Parra-Luna Facultad de Ciencias Políticas y Sociología, Universidad Complutense de Madrid, Spain Keywords: Relativism, Complementarism, Critical science, Epistemology, Hard Systems, Soft Systems, Interpretivism, Methodology, System Science, System Thinking, Total Systems Intervention, Universals, Inputs, Transformation, Objective Outputs, Subjective Outputs, First Outputs, Second Outputs, Regulation, Feedback, Control, cybernetics, Needs, Values, Reference Pattern of Values, Change, Progress, World Pseudosystem. Contents 1. Introduction 2. The Essential Features of the Systemic Method 3. Types of Systems 4. The Universal Scope of Systems 5. Current Trends 5.1. The Return of the Subject 5.2. Information Systems 5.3. Artificial Intelligence 5.4. Internet 5.5. Management 5.6. Critical Systems Theory 5.7. The “World” System 5.8. Systemic Ethics 5.9. Theoretical-Methodological Integration 5.10. Formal Systems 5.11. Biomedical Studies 6. The Social System Concept: Differential Characteristics 7. Social Synergy as a Rational Design 8. Content andUNESCO Structure of Contributions to –this ThemeEOLSS 9. Application of Systems Science and Cybernetics: Modeling Society 10. Does the System Change? 11. Needs and Values: the Reference Pattern of Values 12. System Outputs:SAMPLE Raison D’ Être of “Systems CHAPTERS Science and Cybernetics” 13. An Axiological Model of the World Pseudosystem 14. A New Model for the World System? 15. Conclusion Glossary Bibliography Biographical Sketch Summary ©Encyclopedia of Life Support Systems (EOLSS) SYSTEMS SCIENCE AND CYBERNETICS – Vol. I - Systems Science and Cybernetics: The Long Road to World Sociosystemicity - Francisco Parra-Luna This introductory article is implicitly divided into two parts.
    [Show full text]
  • Meta-Systems Engineering -- Kent Palmer
    Meta-Systems Engineering -- Kent Palmer world schema, etc. that help us elucidate META-SYSTEMS phenomena2. Each of these various schema calls for a different response from ENGINEERING engineering, and thus engenders new engineering disciplines, or at least new approaches to the engineering of large scale A NEW APPROACH TO SYSTEMS systems. Among them are Meta-systems ENGINEERING BASED ON Engineering3, Special Systems based Holonic EMERGENT META-SYSTEMS AND Engineering4 and Domain Engineering5, HOLONOMIC SPECIAL SYSTEMS World Engineering6 and Whole Systems THEORY Design7. What is needed is a way to understand how these various kinds of Kent D. Palmer, Ph.D. schema and their associated engineering disciplines fit together into a coherent set of P.O. Box 1632 approaches. In this paper we will develop a Orange CA 92856 USA theory of how this coherence of different 714-633-9508 [email protected] 2 The approach taken in this work is further Copyright 2000 K.D. Palmer. elucidated by several papers by the author written for All Rights Reserved. International Society for the Systems Sciences (ISSS; Draft Version 1.0; 04/23/2000 http://isss.org) 2000 conference in Toronto. These papers may be seen at Paper for http://dialog.net:85/homepage/autopoiesis.html International Council on Systems Engineering including the following titles “Defining Life And The 10th Annual Symposium Living Ontologically And Holonomically;” “New General Schemas Theory: Systems, Holons, Meta- Keywords: Holonomics, Meta-systems, Systems & Worlds;” “Intertwining Of Duality And Systems Theory, Systems Engineering, Non-Duality;” “Holonomic Human Processes;” and “Genuine Spirtuality And Special Systems Theory” Meta-systems engineering, Special 3 Systems, Emergent Meta-systems, Whole Van Gigch, John P.
    [Show full text]
  • Role of Systems Science in Preventing and Controlling Emerging Infectious Diseases: Protocol for a Scoping Review
    Open access Protocol BMJ Open: first published as 10.1136/bmjopen-2020-046057 on 8 June 2021. Downloaded from Role of systems science in preventing and controlling emerging infectious diseases: protocol for a scoping review Mariam Abdulmonem Mansouri , Frank Kee, Leandro Garcia, Declan T Bradley To cite: Mansouri MA, Kee F, ABSTRACT Strengths and limitations of this study Garcia L, et al. Role of systems Introduction In recent history, many new infectious science in preventing and diseases have affected humans for the first time or have ► We explore the use of systems science approaches controlling emerging infectious appeared in previously unaffected areas of the world; diseases: protocol for a to the prevention and control of emerging infectious these diseases are known as emerging infectious diseases scoping review. BMJ Open diseases. (EIDs). Examples of EIDs include COVID-19, Middle East 2021;11:e046057. doi:10.1136/ ► This protocol uses well- recognised methodological respiratory syndrome and Ebola virus disease. EIDs are bmjopen-2020-046057 frameworks to guide a scoping review. known for their complexity. Multiple factors play a role ► The review uses a broad- based search strategy to ► Prepublication history for in their spread, including increases in human population, uncover and map relevant evidence, searching at this paper is available online. conflicts, urbanisation, air travel, global trade and To view these files, please visit least six databases and grey literature. inequalities in wealth distribution and access to healthcare. the journal online (http:// dx. doi. ► There will not be a language restriction to data In order to gain a better understanding of such complexity, org/ 10.
    [Show full text]