Dose Calculation Algorithms for External Radiation Therapy: an Overview for Practitioners

Total Page:16

File Type:pdf, Size:1020Kb

Dose Calculation Algorithms for External Radiation Therapy: an Overview for Practitioners applied sciences Review Dose Calculation Algorithms for External Radiation Therapy: An Overview for Practitioners Fortuna De Martino 1, Stefania Clemente 2, Christian Graeff 3, Giuseppe Palma 4,*,† and Laura Cella 4,*,† 1 Post Graduate School in Medical Physics, University of Naples Federico II, 80131 Naples, Italy; [email protected] 2 Unit of Medical Physics and Radioprotection, A.O.U Policlinico Federico II, 80131 Naples, Italy; [email protected] 3 Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; [email protected] 4 Institute of Biostructure and Bioimaging, National Research Council (CNR), 80145 Naples, Italy * Correspondence: [email protected] (G.P.); [email protected] (L.C.) † These authors share senior authorship. Featured Application: Radiation therapy treatment planning. Abstract: Radiation therapy (RT) is a constantly evolving therapeutic technique; improvements are continuously being introduced for both methodological and practical aspects. Among the features that have undergone a huge evolution in recent decades, dose calculation algorithms are still rapidly changing. This process is propelled by the awareness that the agreement between the delivered and calculated doses is of paramount relevance in RT, since it could largely affect clinical outcomes. The Citation: De Martino, F.; Clemente, aim of this work is to provide an overall picture of the main dose calculation algorithms currently S.; Graeff, C.; Palma, G.; Cella, L. used in RT, summarizing their underlying physical models and mathematical bases, and highlighting Dose Calculation Algorithms for their strengths and weaknesses, referring to the most recent studies on algorithm comparisons. External Radiation Therapy: An This handy guide is meant to provide a clear and concise overview of the topic, which will prove Overview for Practitioners. Appl. Sci. useful in helping clinical medical physicists to perform their responsibilities more effectively and 2021, 11, 6806. https://doi.org/ efficiently, increasing patient benefits and improving the overall quality of the management of 10.3390/app11156806 radiation treatment. Academic Editors: Chang Ming Keywords: radiation therapy; calculation algorithm; treatment planning system Charlie Ma, Vittoria D’Avino and Mariagabriella Pugliese Received: 18 June 2021 Accepted: 22 July 2021 1. Introduction Published: 24 July 2021 Technological advances in external beam radiation therapy (RT) allow high-precision dose delivery in terms of the target volume, and the improved control of side effects [1–3]. Publisher’s Note: MDPI stays neutral A key feature of modern RT techniques includes the calculation of an accurate dose with regard to jurisdictional claims in in order to assure treatment quality and consistency. Attaining an accurate and fast published maps and institutional affil- dose distribution calculation is indeed one of the most challenging tasks in modern RT. iations. Improvements in dose calculation accuracy could positively affect the effectiveness of treatments, mainly in highly heterogeneous tissues, such as the lungs, where detailed secondary particle tracking is required [4]. This task can be very time-consuming and may lead to unaffordable computational burdens in clinical practice. Since the first works on Copyright: © 2021 by the authors. three-dimensional (3D) dose calculation in the early 1970s [5,6], the evolution of computing Licensee MDPI, Basel, Switzerland. power allowed the deep rethinking of dose calculation algorithms: radiation transport This article is an open access article calculation allowed for more and more accurate reconstructions of energy deposition distributed under the terms and patterns within a clinically acceptable computation time. conditions of the Creative Commons Here, we provide a general overview of modern dose calculation algorithms, through Attribution (CC BY) license (https:// a brief description and discussion of their critical issues. creativecommons.org/licenses/by/ 4.0/). Appl. Sci. 2021, 11, 6806. https://doi.org/10.3390/app11156806 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, 6806 2 of 20 Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 21 2. Dose Calculation Algorithm for Photon Beams 2. DoseA photon Calculation dose Algorithm calculation for algorithm Photon Beams must model the energy deposition pattern inducedA photon by a clinical dose calculation RT X-ray algorithm beam from must a radiationmodel the source,energy mostdeposition commonly pattern fromin- a linearduced accelerator by a clinical (LINAC), RT X-ray in beam patient from tissues, a radiation characterized source, most by the commonly electron from density a linear derived fromaccelerator computed (LINAC), tomography in patient (CT) tissues, imaging charac ofterized patients. by the The electron accelerator density head derived represents from the radiationcomputed source tomography and patient (CT) imaging tissues and of patients. organs stands The accelerator for the interaction head represents targets. the Photons ra- interactdiation source with matter and patient according tissues to and a stochastic organs stands process for the that interaction depends targets. on photon Photons energy andinteract on the with atomic matter number according and to densitya stochastic of theprocess medium that depends through on which photon they energy travel. and The principalon the atomic types number of photon and interaction density of inthe the me megavoltagedium through energy which range they travel. are the The photoelectric princi- effect,pal types Compton of photon scattering interaction and pairin the production, megavoltage which energy attenuate range are the the beam photoelectric according ef- to the Lambert–Beerfect, Compton lawscattering [7] with and an pair overall production linear attenuation, which attenuate coefficient the beamm(E according) given by to the the sum ofLambert–Beer single-process law attenuation [7] with an overall coefficients. linear attenuation coefficient () given by the sum of single-processModern dose attenuation calculation coefficients. algorithms (Figure1)—the so called model-based algorithms, in contrapositionModern dose to calculation correction-based algorithms algorithms—for (Figure 1)—the photon so beamscalled model-based are based on algo- the total energyrithms, released in contraposition in matter to (TERMA) correction-base value,d which algorithms—for is the total energyphoton perbeams unit are of based target on mass releasedthe total atenergy the primary released photon in matter interaction (TERMA) point value, [8 ].which is the total energy per unit of target mass released at the primary photon interaction point [8]. FigureFigure 1.1. HistoricalHistorical evolution evolution of ofdose dose calculation calculation engines engines and their and relative their relative accuracy. accuracy. Abbreviations: Abbrevia- tions:PBC: pencil PBC: pencilbeam convolution, beam convolution, AAA: analytical AAA: analytical anisotropic anisotropic algorithm, algorithm, CCC: collapsed CCC: cone collapsed convo- cone convolution,lution, MC: Monte MC: Monte Carlo, Carlo,LBTE: LBTE:linear Boltzmann linear Boltzmann transport transport equations. equations. () TheThe differentialdifferential TERMATERMA energy distribution distribution TE(r) isis related related to to the the energy energy differen- differential tial fluence () of the primary photon beam by the following relation: fluence yE(r) of the primary photon beam by the following relation: () = m(, )() (1) TE(r) = (r, E)yE(r) (1) r where () is the local density, estimated from the CT number value, and (, ) is the m wheremass attenuationr(r) is the coefficient local density, at estimated. from the CT number value, and r (r, E) is the massIntegrating attenuation over coefficient the beam at spectrum,r. we obtain the TERMA [8]: Integrating over the beam spectrum, we obtain the TERMA [8]: () =Z (, )() (2) m T (r) = (r, E)yE(r)dE (2) If released energy is absorbed locally,E r TERMA coincides with the absorbed dose. Conversely, if a secondary energy transport is considered, the dose in a homogenous me- dium can be derived as the following convolution: Appl. Sci. 2021, 11, 6806 3 of 20 If released energy is absorbed locally, TERMA coincides with the absorbed dose. Conversely, if a secondary energy transport is considered, the dose in a homogenous medium can be derived as the following convolution: Z Z D(r) = TE(s)h(r − s, E)dsdE (3) E V where h(s, E) is the normalized point spread function, or “dose spread kernel” (DSK), at energy E and position s relative to the point of scattering of the primary photon [8]. The DSK describes the energy transport by the secondary particles, including single and multiple scattered photons, photoelectric electrons, Compton electrons, electron–positron pairs, bremsstrahlung photons, photonuclear particles and so on. For inhomogeneous media, the translation invariance is broken and a single DSK can no longer account for the secondary transport throughout the target. In this case, a full superposition integral need to be carried out: 1 Z Z D(r) = TE(s)r(s)k(r, s, E)dsdE (4) r(r) E V where k(r, s, E) is the normalized energy delivered at point r by secondary particles, associ- ated to a primary photon of energy E interacting in s: Z k(r, s, E)dr = 1 (5) V 2.1. Dose Spread Kernel Monte Carlo (MC) simulation is the most practical technique for the calculation of energy deposition kernels. Kernels for monoenergetic
Recommended publications
  • Radiotherapy for Unresectable Locally Advanced Non-Small Cell Lung Cancer
    2112 Review Article Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy Tiantian Guo1,2#, Liqing Zou1,2#, Jianjiao Ni1,2, Xiao Chu1,2, Zhengfei Zhu1,2,3 1Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; 2Department of Oncology, Shanghai Medical College, 3Institute of Thoracic Oncology, Fudan University, Shanghai, China Contributions: (I) Conception and design: Z Zhu; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These two authors contributed equally to this work. Correspondence to: Zhengfei Zhu, MD. Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China. Email: [email protected]. Abstract: Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of immunotherapy and has raised important questions for future study, such as the future directions of radiation therapy for LA-NSCLC in the era of immunotherapy. Modern radiotherapy techniques such as three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) provide opportunities for improved target conformity and reduced normal-tissue exposure. However, the low-dose radiation volume brought by IMRT and its effects on the immune system deserve particular attention when combing radiotherapy and immunotherapy.
    [Show full text]
  • Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening
    Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® System by Taindra Neupane A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Professional Science Master Florida Atlantic University Boca Raton, FL December 2018 Copyright 2018 by Taindra Neupane ii Acknowledgements First, I would like to express my gratitude to my Advisor, Dr. Charles Shang for providing me the opportuinity to do this research at Lynn Cancer Institute, Boca Raton Regional Hospital at Boca Raton and his guidance, enthusiasm and motivation which helped me to accomplish this reasearch. I would also like to thank my committee members, Dr. Theodora Leventouri, and Dr. Silvia Pella for their constructive guidance and support. I am particularly grateful to Dr. Theodora Leventouri, Professor of Physics, for her relentless encouragement, direction and assistance for my academics at the department. I am also thankful to all the faculty members and fellow graduate students in the department of physics who contributed to my learning process directly and indirectly. Finally, I would like to thank Dr. Francescon and Dr. Reynaert for providing the sample input files, the EGSnrc Google Plus Forum for answering my questions during the MC simulations, Musfiqur Rahaman for his help in technical problems, and my family members for their continuous support. iv Abstract Author: Taindra Neupane Title: Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® System Institution: Florida Atlantic University Thesis Co-Advisors: Dr.
    [Show full text]
  • Automation of the Monte Carlo Simulation of Medical Linear
    doctoral dissertation AUTOMATIONOFTHEMONTECARLOSIMULATIONOF MEDICALLINEARACCELERATORS miguel lázaro rodríguez castillo Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Barcelona - November 20th, 2015 Co-supervisors: Priv.-Doz. Dr. Lorenzo Brualla Klinik- und Poliklinik für Strahlentherapie Universitätsklinikum Essen Universität Duisburg-Essen Dr. Josep Sempau Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Para mis padres, mi esposa y mis hijos The enjoyment of one’s tools is an essential ingredient of successful work — Donald E. Knuth PUBLICATIONS Publications in scientific journals related to this thesis: • M. Rodriguez, J. Sempau, A. Fogliata, L. Cozzi, W. Sauerwein, and L. Brualla. A geometrical model for the Monte Carlo simu- lation of the TrueBeam linac. Phys. Med. Biol., 60:N219–N229, 2015. • M. Rodriguez, J. Sempau, and L. Brualla. Study of the electron transport parameters used in penelope for the Monte Carlo simulation of linac targets. Med. Phys., 42:2877–2881, 2015. • M. F. Belosi, M. Rodriguez, A. Fogliata, L. Cozzi, J. Sempau, A. Clivio, G. Nicolini, E. Vanetti, H. Krauss, C. Khamphan, P. Fe- noglietto, J. Puxeu, D. Fedele, P. Mancosu, and L. Brualla. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med. Phys., 41:051707, 2014. • M. Rodriguez, J. Sempau, and L. Brualla. PRIMO: A graphi- cal environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther. Onkol., 189:881–886, 2013. • M. Rodriguez, J. Sempau, and L. Brualla. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys. Med. Biol., 57:3013–3024, 2012. Additional publication in a scientific journal related to this thesis: • M.
    [Show full text]
  • Proton Beam Radiotherapy
    DESIGN AND SIMULATION OF A PASSIVE-SCATTERING NOZZLE IN PROTON BEAM RADIOTHERAPY A Thesis by FADA GUAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Health Physics DESIGN AND SIMULATION OF A PASSIVE-SCATTERING NOZZLE IN PROTON BEAM RADIOTHERAPY A Thesis by FADA GUAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, John W. Poston, Sr. Committee Members, Leslie A. Braby Michael A. Walker Head of Department, Raymond J. Juzaitis December 2009 Major Subject: Health Physics iii ABSTRACT Design and Simulation of a Passive-Scattering Nozzle in Proton Beam Radiotherapy. (December 2009) Fada Guan, B.E., Tsinghua University, China Chair of Advisory Committee: Dr. John W. Poston, Sr. Proton beam radiotherapy is an emerging treatment tool for cancer. Its basic principle is to use a high-energy proton beam to deposit energy in a tumor to kill the cancer cells while sparing the surrounding healthy tissues. The therapeutic proton beam can be either a broad beam or a narrow beam. In this research, we mainly focused on the design and simulation of the broad beam produced by a passive double-scattering system in a treatment nozzle. The NEU codes package is a specialized design tool for a passive double- scattering system in proton beam radiotherapy. MCNPX is a general-purpose Monte Carlo radiation transport code. In this research, we used the NEU codes package to design a passive double-scattering system, and we used MCNPX to simulate the transport of protons in the nozzle and a water phantom.
    [Show full text]
  • Sudan Academy of Sciences (SAS)
    ﺑ ﻤﻢ اﻟﻒ اﻟﺮﺣﻤﻦ اﻟ ﺮ ﺣﻢ Sudan Academy of Sciences (SAS) Atomic Energy Councii Characterization of60 Co Dose Distribution Using BEAMnrc Monte Carlo Code By: Majzoop Ibrahim Mohammed Abuissa ؛az؛Supervisor Dr. Omer Abd E z Ali December 2012 ﺑ ﺴ ﻢ اﻟ ﻐﺪ اﻟ ﺮ ﺣ ﻤ ﻦ اﻟ ﺮ ﺣ ﻴ ﻢ Sudan Academy of Sciences (SAS) Atomic Energy Council Characterization Of 60Co Dose Distribution Using BEAMnrc Monte Carlo Code By: Majzoop Ibrahim Mohammed Abuissa Technology ظ B.Sc. (Physics iaboratory, 2003), Sudan University of Science (Sudan Academy of Sciences , قHigh diploma (Nuclear Science - Physics,200 ?artial fulfillment Research submitted to the Sudan Academy ©f Radiation and ط Sciences for admission of Master degree Enviro^ntal ?rotection Supervisor: Dr. Omer Abd Elaziz Ali December 2012 Sudan Academy of Sciences (SAS) Atomic Energy Council Characterization of60 Co Dose Distribution Using BEAMnrc Monte Cario Code By Majzoop Ibrahim Mohammed Abuissa Examination committee Title Name Signature Supervisor Dr. Omer Abd Elaziz Ali ٠ External Examiner Prof. Mohammed Osman Seed Ahmed Internal Examiner Dr. Isam Salih Mohamed December 2012 آ ﻳ ﺔ ﻗ ﺮ آ ﻧ ﻴ ﺔ ﻗﺎل ﺗﻌﺎﻟ ﻰ ر وﻣﻦ ﻳﻌﻤﻞ ﻣﻦ اﻟ ﺼﺎﻟﺤﺎ ت وﻫﻮ ﻣﺆﻣﻦ ﻓ ﻻ ﻳ ﺨﺎ ف ﻇﻠﻤﺄ و ﻻ ﻫ ﻀﻤﺎ 11} {2 وﻛﺬﻟ ﻚ أﻧﺰﻟﻨﺎه ﻗﺮآﻧﺄ ﻋﺮﺑﻴﺂ و ﺻﺮﻓﻨﺎ ﻓﻴﻪ ﻣﻦ اﻟﻮﻋﻴﺪ ﻟﻌﻠﻬﻢ ﻳﺘﻘﻮن أو ﻳﺤﺪ ث ﻟﻬﻢ ذﻛﺮار 3ل {1 ﻓﺘﻌﺎﻟﻰ اش اﻟﻤﻠﻚ اﻟﺤﻖ وﻻﺗﻌﺠﻞ ﺑﺎﻟﻘﺮآن ﻣﻦ ﻗﺒﻞ أن ﻳﻘﻀﻰ إﻟﻴﻚ وﺣﻴﻪ وﻗﻞ ر ب زدﻧ ﻰ ﻋﻠﻤﺎ {114} ( ﺻﺪق اش اﻟﻌﻈﻴﻢ ﺳﻮره DEDICATION To my beloved country .......... ...........to my family....
    [Show full text]
  • Design of a Spherical Applicator for Intraoperative Radiotherapy with a Linear Accelerator—A Monte Carlo Simulation
    Physics in Medicine & Biology PAPER Design of a spherical applicator for intraoperative radiotherapy with a linear accelerator—a Monte Carlo simulation To cite this article: P Ma et al 2019 Phys. Med. Biol. 64 015014 View the article online for updates and enhancements. This content was downloaded from IP address 124.17.113.55 on 07/01/2019 at 06:26 IOP Phys. Med. Biol. 64 (2019) 015014 (12pp) https://doi.org/10.1088/1361-6560/aaec59 Physics in Medicine & Biology Phys. Med. Biol. 64 PAPER 2019 Design of a spherical applicator for intraoperative radiotherapy 2018 Institute of Physics and Engineering in Medicine RECEIVED © 2 August 2018 with a linear accelerator—a Monte Carlo simulation REVISED 8 October 2018 PHMBA7 P Ma1, Y Li2, Y Tian1, B Liu3, F Zhou3 and J Dai1 ACCEPTED FOR PUBLICATION 29 October 2018 1 Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People s Republic of China 015014 PUBLISHED ’ 21 December 2018 2 Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong, People’s Republic of China 3 Image Processing Center, Beihang University, Beijing, People s Republic of China P Ma et al ’ E-mail: [email protected] Keywords: spherical applicator, intraoperative electron beam radiotherapy, roundness Printed in the UK Abstract Currently only flat dose distributions can be generated by electron beams of a linear accelerator for intraoperative radiotherapy (IORT). However, spherical dose distributions are more desirable for PMB certain types of cancers such as breast cancer and brain cancers.
    [Show full text]
  • 1199 Radiation Therapy Clinical Guidelines Effective 07/01
    CLINICAL GUIDELINES Radiation Therapy Version 2.0.2019 Effective July 1, 2019 Clinical guidelines for medical necessity review of radiation therapy services. © 2019 eviCore healthcare. All rights reserved. Radiation Therapy Criteria V2.0.2019 Table of Contents Brachytherapy of the Coronary Arteries 6 Hyperthermia 15 Image-Guided Radiation Therapy (IGRT) 18 Neutron Beam Therapy 22 Proton Beam Therapy 24 Radiation Therapy for Anal Canal Cancer 66 Radiation Therapy for Bladder Cancer 69 Radiation Therapy for Bone Metastases 72 Radiation Therapy for Brain Metastases 77 Radiation Therapy for Breast Cancer 85 Radiation Therapy for Cervical Cancer 96 Radiation Therapy for Endometrial Cancer 103 Radiation Therapy for Esophageal Cancer 110 Radiation Therapy for Gastric Cancer 115 Radiation Therapy for Head and Neck Cancer 118 Radiation Therapy for Hepatobiliary Cancer 122 Radiation Therapy for Hodgkin’s Lymphoma 128 Radiation Therapy for Kidney and Adrenal Cancer 132 Radiation Therapy for Multiple Myeloma and Solitary Plasmacytomas 134 Radiation Therapy for Non-Hodgkin’s Lymphoma 138 Radiation Therapy for Non-malignant Disorders 143 Radiation Therapy for Non-Small Cell Lung Cancer 161 Radiation Therapy for Oligometastases 172 Radiation Therapy for Other Cancers 182 Radiation Therapy for Pancreatic Cancer 183 Radiation Therapy for Primary Craniospinal Tumors and Neurologic Conditions 189 Radiation Therapy for Prostate Cancer 197 Radiation Therapy for Rectal Cancer 206 Radiation Therapy for Skin Cancer 209 Radiation Therapy for Small Cell Lung Cancer 217 Radiation Therapy for Soft Tissue Sarcomas 220 Radiation Therapy for Testicular Cancer 226 Radiation Therapy for Thymoma and Thymic Cancer 229 Radiation Therapy for Urethral Cancer and Upper Genitourinary Tract Tumors 233 Radiation Treatment with Azedra 235 Radiation Treatment with Lutathera 238 Radioimmunotherapy with Zevalin 243 Selective Internal Radiation Therapy 254 ______________________________________________________________________________________________________ © 2019 eviCore healthcare.
    [Show full text]
  • Emerging Technologies and Techniques in Radiation Therapy William J
    Emerging Technologies and Techniques in Radiation Therapy William J. Magnuson, MD, Amandeep Mahal, BS, and James B. Yu, MD, MHS The past decade has brought an improved ability to precisely target and deliver radiation as well as other focal prostate-directed therapy. Stereotactic body radiotherapy (SBRT), proton beam radiation, high-dose-rate (HDR) brachytherapy, as well as nonradiotherapy treatments such as cryoablation and high-intensity focused ultrasound are several therapeutic modalities that have been investigated for the treatment of prostate cancer in an attempt to reduce toxicity while improving cancer control. However, high-risk prostate cancer requires a comprehensive treatment of the prostate as well as areas at risk for cancer spread. Therefore, most new radiation treatment (SBRT, HDR, and proton beam radiation) modalities have been largely investigated in combination with regional radiation therapy. Though the evidence is evolving, the use of SBRT, HDR, and proton beam radiation is promising. Nonradiation focal therapy has been proposed mainly for partial gland treatment in men with low-risk disease, and its use in high-risk prostate cancer patients remains experimental. Semin Radiat Oncol 27:34-42 C 2016 Elsevier Inc. All rights reserved. Introduction treatment because of greater resistance to current doses of fractionated radiation,1 and therefore may benefit from emerg- he past 10 years has brought an improved ability to ing technologies that aim to escalate dose locally. Balancing this Tprecisely target and deliver radiation and other non- need for local dose escalation is the greater likelihood of surgical treatment to the prostate. For prostate cancer that extraprostatic and more distant disease with high-risk disease.
    [Show full text]
  • Proton Therapy for Partial Breast Irradiation: Rationale and Considerations
    Journal of Personalized Medicine Review Proton Therapy for Partial Breast Irradiation: Rationale and Considerations J. Isabelle Choi 1,2,*, Jana Fox 2,3, Richard Bakst 2,4, Shaakir Hasan 2,3, Robert H. Press 2,4 , Arpit M. Chhabra 2, Brian Yeh 2,4, Charles B. Simone II 1,2 and Oren Cahlon 1,2 1 Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY 10065, USA; [email protected] (C.B.S.II); [email protected] (O.C.) 2 New York Proton Center, New York, NY 10035, USA; jfox@montefiore.org (J.F.); [email protected] (R.B.); [email protected] (S.H.); [email protected] (R.H.P.); [email protected] (A.M.C.); [email protected] (B.Y.) 3 Montefiore Medical Center, Department of Radiation Oncology, New York, NY 10467, USA 4 Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA * Correspondence: [email protected] Abstract: In an era of continued advancements in personalized medicine for the treatment of breast cancer, select patients with early stage breast cancer may be uniquely poised to benefit from partial breast irradiation (PBI) delivered with proton therapy. PBI presents an opportunity to improve quality of life during treatment with a significantly shorter treatment duration. By targeting less non-target breast tissue, excess radiation exposure and resulting toxicities are also reduced. Proton therapy represents a precision radiotherapy technology that builds on these advantages by further limiting the normal tissue exposure to unnecessary radiation dose not only to uninvolved breast tissue but also the underlying thoracic organs including the heart and lungs.
    [Show full text]
  • Department of Radiation Oncology
    8900 N. Kendall Drive Miami, Florida 33176 (305) 596-2000 MiamiCancerInstitute.com DEPARTMENT OF RADIATION ONCOLOGY Overview Miami Cancer Institute’s world-renowned radiation oncology experts spend a great deal of time not only caring for patients, but are continually searching for more effective treatments through innovative clinical care, research and education programs. As the only cancer center in the world to offer all of the latest radiation therapy technologies under one roof, Miami Cancer Institute’s physicians provide the very best treatment and therapy approach for all patients, personalized specifically for each patient’s particular tumor. Miami Cancer Institute is also home to South Florida’s first state-of-the-art Proton Therapy Center. Miami Cancer Institute’s patients also benefit from their robust clinical trials program as a their growing list of sponsored and investigator-initiated clinical trials has enhanced their research portfolio and assisted oncologists and other healthcare experts gain insights into even more ways to prevent, detect, treat and cure cancer. These are critical to providing the most technologically advanced treatments to patients in our community, promoting Miami Cancer Institute’s mission of providing “high tech, high-touch” cancer care. Radiation Oncology - Medical Physics The Radiation Oncology Physics team at Miami Cancer Institute has several areas of research aimed at improving patient outcomes, developing innovative approaches to improving radiation delivery and refining methods of improved cancer imaging, planning and treatment. The faculty, composed of radiation oncology physicists and medical dosimetrists, is committed to excellence and innovation in clinical practice, scientific research, technological development, and education. Actively participating in research activities, the Radiation Oncology Physics team plays a key role in linking the technological advances in radiation delivery and cancer imaging to establish innovative techniques to improve the therapeutic window for cancer patients.
    [Show full text]
  • Radiation Transport Monte Carlo Modeling: Capabilities and Examples
    Outline Monte Carlo Radiation Transport • Overview of radiation transport Modeling: capabilities and packages (other than MCNP), with examples capabilities and examples • New features in MCNP6 Lecture 8 • Hands-on examples – Use of VisEd Special Topics: – Make simple changes to Example files Device Modeling Some radiation transport Introduction packages • Modern Monte Carlo modeling approach was developed in late 1940’s by Stanislav Ulam • The list is non-exhaustive working on nuclear weapons projects at LANL – ETRAN (Berger, Seltzer; NIST 1978) – EGS4 (Nelson, Hirayama, Rogers; SLAC 1985) • Coincided with development of the first electronic www.slac.stanford.edu/egs computer ENIAC (Electronic Numerical – EGS5 (Hirayama et al; KEK-SLAC 2005) Integrator And Computer) rcwww.kek.jp/research/egs/egs5.html • Several general-purpose and specialized radiation – EGSnrc (Kawrakow and Rogers; NRCC 2000) transport packages are available www.irs.inms.nrc.ca/inms/irs/irs.html • Most are free for the academic use – Penelope (Salvat et al; U. Barcelona 1999) www.nea.fr/lists/penelope.htm Some radiation transport Electron-Gamma Shower (EGS) packages • The Electron-Gamma Shower (EGS) computer • The list is non-exhaustive code system is a general purpose package for the – Fluka (Ferrari et al; CERN-INFN 2005) www.fluka.org Monte Carlo simulation of the coupled transport – Geant3 (Brun et al; CERN 1986) www.cern.ch of electrons and photons – Geant4 (Apostolakis et al; CERN++ 1999) • Features an arbitrary geant4.web.cern.ch/geant4 geometry – MARS (James
    [Show full text]
  • The Modern Technology of Radiation Oncology, Vol. 1
    • Import a graphic of a cover onto the • Extract and save the page. 8 x 10 correct-sized page. • Insert the page to the beginning of the • Make a PDF. sample chapter in question. • Crop out the new page. +HUHLVDVDPSOHFKDSWHU IURPWKLVERRN The Modern 7KLVVDPSOHFKDSWHULVFRS\ULJKWHG DQGPDGHDYDLODEOHIRUSHUVRQDOXVH Technology RQO\1RSDUWRIWKLVFKDSWHUPD\EH of UHSURGXFHGRUGLVWULEXWHGLQDQ\ Radiation IRUPRUE\DQ\PHDQVZLWKRXWWKH Oncology SULRUZULWWHQSHUPLVVLRQRI0HGLFDO 3K\VLFV3XEOLVKLQJ A Compendium for Medical Physicists and Radiation Oncologists Editor s Jacob Van Dyk The Modern Technology of Radiation Oncology A Compendium for Medical Physicists and Radiation Oncologists Jacob Van Dyk Editor Medical Physics Publishing Madison, Wisconsin © 1999 by Jacob Van Dyk. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Printed in the United States of America First printing 1999 Library of Congress Cataloging-in-Publication Data The modern technology of radiation oncology / Jacob Van Dyk, editor. p. cm. Includes bibliographical references and index. ISBN 0-944838-38-3 (hardcover). – ISBN 0-944838-22-7 (softcover) 1. Cancer—Radiotherapy. 2. Medical physics. 3. Radiology, Medical. 4. Cancer—Radiotherapy—Equipment and supplies. I. Van Dyk, J. (Jake) [DNLM: 1. Neoplasms—radiotherapy. 2. Equipment Design. 3. Radiotherapy—instrumentation. 4. Radiotherapy—methods. 5. Technology, Radiologic. QZ 269 M6893 1999] RC271.R3M5935 1999 616.99’ 40642—dc21 DNLM/DLC for Library of Congress 99-31932 CIP ISBN 0-944838-38-3 (hardcover) ISBN 0-944838-22-7 (softcover) ISBN 978-1-930524-89-7 (2015 eBook edition) Medical Physics Publishing 4555 Helgesen Dr.
    [Show full text]