Emerging Technologies and Techniques in Radiation Therapy William J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Institute for Clinical and Economic Review
INSTITUTE FOR CLINICAL AND ECONOMIC REVIEW FINAL APPRAISAL DOCUMENT BRACHYTHERAPY & PROTON BEAM THERAPY FOR TREATMENT OF CLINICALLY-LOCALIZED, LOW-RISK PROSTATE CANCER December 22, 2008 Senior Staff Daniel A. Ollendorf, MPH, ARM Chief Review Officer Julia Hayes, MD Lead Decision Scientist Pamela McMahon, PhD Sr. Decision Scientist Steven D. Pearson, MD, MSc President, ICER Associate Staff Michelle Kuba, MPH Sr. Technology Analyst Angela Tramontano, MPH Research Assistant © ICER, 2008 1 CONTENTS About ICER .................................................................................................................................. 3 Acknowledgments ...................................................................................................................... 4 Executive Summary .................................................................................................................... 5 Evidence Review Group Deliberation.................................................................................. 15 ICER Integrated Evidence Rating.......................................................................................... 21 Evidence Review Group Members........................................................................................ 24 Appraisal Overview.................................................................................................................. 28 Background ............................................................................................................................... -
Radiotherapy for Unresectable Locally Advanced Non-Small Cell Lung Cancer
2112 Review Article Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy Tiantian Guo1,2#, Liqing Zou1,2#, Jianjiao Ni1,2, Xiao Chu1,2, Zhengfei Zhu1,2,3 1Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; 2Department of Oncology, Shanghai Medical College, 3Institute of Thoracic Oncology, Fudan University, Shanghai, China Contributions: (I) Conception and design: Z Zhu; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These two authors contributed equally to this work. Correspondence to: Zhengfei Zhu, MD. Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China. Email: [email protected]. Abstract: Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of immunotherapy and has raised important questions for future study, such as the future directions of radiation therapy for LA-NSCLC in the era of immunotherapy. Modern radiotherapy techniques such as three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) provide opportunities for improved target conformity and reduced normal-tissue exposure. However, the low-dose radiation volume brought by IMRT and its effects on the immune system deserve particular attention when combing radiotherapy and immunotherapy. -
Trends in Targeted Prostate Brachytherapy: from Multiparametric MRI to Nanomolecular Radiosensitizers
Nicolae et al. Cancer Nano (2016) 7:6 DOI 10.1186/s12645-016-0018-5 REVIEW Open Access Trends in targeted prostate brachytherapy: from multiparametric MRI to nanomolecular radiosensitizers Alexandru Mihai Nicolae1, Niranjan Venugopal2 and Ananth Ravi1* *Correspondence: [email protected] Abstract 1 Odette Cancer Centre, The treatment of localized prostate cancer is expected to become a significant Sunnybrook Health Sciences Centre, 2075 Bayview Ave, problem in the next decade as an increasingly aging population becomes prone to Toronto, ON M4N3M5, developing the disease. Recent research into the biological nature of prostate cancer Canada has shown that large localized doses of radiation to the cancer offer excellent long- Full list of author information is available at the end of the term disease control. Brachytherapy, a form of localized radiation therapy, has been article shown to be one of the most effective methods for delivering high radiation doses to the cancer; however, recent evidence suggests that increasing the localized radiation dose without bound may cause unacceptable increases in long-term side effects. This review focuses on methods that have been proposed, or are already in clinical use, to safely escalate the dose of radiation within the prostate. The advent of multiparametric magnetic resonance imaging (mpMRI) to better identify and localize intraprostatic tumors, and nanomolecular radiosensitizers such as gold nanoparticles (GNPs), may be used synergistically to increase doses to cancerous tissue without the -
High Dose-Rate Brachytherapy of Localized Prostate Cancer Converts
Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-000792 on 24 June 2020. Downloaded from High dose- rate brachytherapy of localized prostate cancer converts tumors from cold to hot 1,2,3 1 1 1 Simon P Keam , Heloise Halse, Thu Nguyen, Minyu Wang , Nicolas Van Kooten Losio,1 Catherine Mitchell,4 Franco Caramia,3 David J Byrne,4 Sue Haupt,2,3 Georgina Ryland,4 Phillip K Darcy,1,2 Shahneen Sandhu,5 2,4 2,3 6 1,2 Piers Blombery, Ygal Haupt, Scott G Williams, Paul J Neeson To cite: Keam SP, Halse H, ABSTRACT organized immune infiltrates and signaling changes. Nguyen T, et al. High dose- rate Background Prostate cancer (PCa) has a profoundly Understanding and potentially harnessing these changes brachytherapy of localized immunosuppressive microenvironment and is commonly will have widespread implications for the future treatment prostate cancer converts tumors immune excluded with few infiltrative lymphocytes and of localized PCa, including rational use of combination from cold to hot. Journal for low levels of immune activation. High- dose radiation radio- immunotherapy. ImmunoTherapy of Cancer 2020;8:e000792. doi:10.1136/ has been demonstrated to stimulate the immune system jitc-2020-000792 in various human solid tumors. We hypothesized that localized radiation therapy, in the form of high dose- INTRODUCTION ► Additional material is rate brachytherapy (HDRBT), would overcome immune Standard curative- intent treatment options published online only. To view suppression in PCa. for localized prostate cancer (PCa) include please visit the journal online Methods To investigate whether HDRBT altered prostate radical prostatectomy or radiotherapy.1 (http:// dx. -
Proton Stereotactic Body Radiation Therapy for Liver Metastases— Results of 5-Year Experience for 81 Hepatic Lesions
1760 Original Article Proton stereotactic body radiation therapy for liver metastases— results of 5-year experience for 81 hepatic lesions Alex R. Coffman1, Daniel C. Sufficool2, Joseph I. Kang1, Chung-Tsen Hsueh3, Sasha Swenson4, Patrick Q. McGee4, Gayathri Nagaraj3, Baldev Patyal1, Mark E. Reeves5, Jerry D. Slater1, Gary Y. Yang1 1Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA; 2Department of Radiation Oncology, Kettering Health Network, Kettering, OH, USA; 3Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA; 4Loma Linda University School of Medicine, Loma Linda, CA, USA; 5Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA Contributions: (I) Conception and design: GY Yang; (II) Administrative support: B Patyal, JD Slater, GY Yang; (III) Provision of study materials or patients: CT Hsueh, G Nagaraj, ME Reeves; (IV) Collection and assembly of data: AR Coffman, GY Yang; (V) Data analysis and interpretation: AR Coffman, GY Yang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Alex R. Coffman, MD. Department of Radiation Oncology, Loma Linda University Medical Center, 11234 Anderson Street, Suite B121, Loma Linda, CA 92354, USA. Email: [email protected]. Background: To report on our institutional experience using Proton stereotactic body radiation therapy (SBRT) for patients with liver metastases. Methods: All patients with liver metastases treated with Proton SBRT between September 2012 and December 2017 were retrospectively analyzed. Local control (LC) and overall survival (OS) were estimated using the Kaplan-Meier method calculated from the time of completion of Proton SBRT. LC was defined according to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines (version 1.1). -
An Analysis of Vertebral Body Growth After Proton Beam Therapy for Pediatric Cancer
cancers Article An Analysis of Vertebral Body Growth after Proton Beam Therapy for Pediatric Cancer Keiichiro Baba 1, Masashi Mizumoto 1,* , Yoshiko Oshiro 1,2, Shosei Shimizu 1 , Masatoshi Nakamura 1, Yuichi Hiroshima 1 , Takashi Iizumi 1, Takashi Saito 1, Haruko Numajiri 1, Kei Nakai 1 , Hitoshi Ishikawa 1,3, Toshiyuki Okumura 1, Kazushi Maruo 4 and Hideyuki Sakurai 1 1 Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Ibaraki 305-8576, Japan; [email protected] (K.B.); [email protected] (Y.O.); [email protected] (S.S.); [email protected] (M.N.); [email protected] (Y.H.); [email protected] (T.I.); [email protected] (T.S.); [email protected] (H.N.); [email protected] (K.N.); [email protected] (H.I.); [email protected] (T.O.); [email protected] (H.S.) 2 Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki 305-8558, Japan 3 National Institutes for Quantum and Radiological Science and Technology, QST Hospital, Chiba 263-8555, Japan 4 Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-29-853-7100; Fax: +81-29-853-7102 Simple Summary: Radiotherapy has a key role in treatment of pediatric cancer and has greatly improved survival in recent years. However, vertebrae are often included in the irradiated area, and this may affect growth after treatment. -
Particle Accelerators and Detectors for Medical Diagnostics and Therapy Arxiv:1601.06820V1 [Physics.Med-Ph] 25 Jan 2016
Particle Accelerators and Detectors for medical Diagnostics and Therapy Habilitationsschrift zur Erlangung der Venia docendi an der Philosophisch-naturwissenschaftlichen Fakult¨at der Universit¨atBern arXiv:1601.06820v1 [physics.med-ph] 25 Jan 2016 vorgelegt von Dr. Saverio Braccini Laboratorium f¨urHochenenergiephysik L'aspetto pi`uentusiasmante della scienza `eche essa incoraggia l'uomo a insistere nei suoi sogni. Guglielmo Marconi Preface This Habilitation is based on selected publications, which represent my major sci- entific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. They are reprinted in Part II of this work to be considered for the Habilitation and they cover original achievements and relevant aspects for the present and future of medical applications of particle physics. The text reported in Part I is aimed at putting my scientific work into its con- text and perspective, to comment on recent developments and, in particular, on my contributions to the advances in accelerators and detectors for cancer hadrontherapy and for the production of radioisotopes. Dr. Saverio Braccini Bern, 25.4.2013 i ii Contents Introduction 1 I 5 1 Particle Accelerators and Detectors applied to Medicine 7 2 Particle Accelerators for medical Diagnostics and Therapy 23 2.1 Linacs and Cyclinacs for Hadrontherapy . 23 2.2 The new Bern Cyclotron Laboratory and its Research Beam Line . 39 3 Particle Detectors for medical Applications of Ion Beams 49 3.1 Segmented Ionization Chambers for Beam Monitoring in Hadrontherapy 49 3.2 Proton Radiography with nuclear Emulsion Films . 62 3.3 A Beam Monitor Detector based on doped Silica Fibres . -
A Review of Rectal Toxicity Following Permanent Low Dose-Rate Prostate Brachytherapy and the Potential Value of Biodegradable Rectal Spacers
Prostate Cancer and Prostatic Disease (2015) 18, 96–103 © 2015 Macmillan Publishers Limited All rights reserved 1365-7852/15 www.nature.com/pcan REVIEW A review of rectal toxicity following permanent low dose-rate prostate brachytherapy and the potential value of biodegradable rectal spacers ME Schutzer1, PF Orio2, MC Biagioli3, DA Asher4, H Lomas1 and D Moghanaki1,5 Permanent radioactive seed implantation provides highly effective treatment for prostate cancer that typically includes multidisciplinary collaboration between urologists and radiation oncologists. Low dose-rate (LDR) prostate brachytherapy offers excellent tumor control rates and has equivalent rates of rectal toxicity when compared with external beam radiotherapy. Owing to its proximity to the anterior rectal wall, a small portion of the rectum is often exposed to high doses of ionizing radiation from this procedure. Although rare, some patients develop transfusion-dependent rectal bleeding, ulcers or fistulas. These complications occasionally require permanent colostomy and thus can significantly impact a patient’s quality of life. Aside from proper technique, a promising strategy has emerged that can help avoid these complications. By injecting biodegradable materials behind Denonviller’s fascia, brachytherpists can increase the distance between the rectum and the radioactive sources to significantly decrease the rectal dose. This review summarizes the progress in this area and its applicability for use in combination with permanent LDR brachytherapy. Prostate Cancer and Prostatic Disease (2015) 18, 96–103; doi:10.1038/pcan.2015.4; published online 17 February 2015 A BRIEF HISTORY OF LOW DOSE-RATE PROSTATE demonstrated an 82% 8-year bPFS for 1444 patients treated with BRACHYTHERAPY radioactive seed implant for low-risk disease;4 (2) a series by Originally described in 1917, low dose-rate (LDR) prostate Taira et al. -
Proton Therapy ACKNOWLEDGEMENTS
AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit organization dedicated solely to brain tumor research. For over 40 years, the Chicago-based ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Anita Mahajan, Director of International Development, MD Anderson Proton Therapy Center, director, Pediatric Radiation Oncology, co-section head of Pediatric and CNS Radiation Oncology, The University of Texas MD Anderson Cancer Center; Kevin S. Oh, MD, Department of Radiation Oncology, Massachusetts General Hospital; and Sridhar Nimmagadda, PhD, assistant professor of Radiology, Medicine and Oncology, Johns Hopkins University, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2015 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy INTRODUCTION Brain tumors are highly variable in their treatment and prognosis. Many are benign and treated conservatively, while others are malignant and require aggressive combinations of surgery, radiation and chemotherapy. -
PIONEERING THERAPY for LIFE Table of Contents
PIONEERING THERAPY FOR LIFE Table of contents Key figures 20151 IBA at a glance 2 IBA is 30 years old 4 Proton therapy 6 Dosimetry 20 RadioPharma Solutions 24 Industrial 26 Human resources 28 Corporate social responsibility 30 Governance 36 Economical review 39 IFRS consolidated financial statements for the year ended December 31, 2015 73 IBA SA Annual financial statements148 General information 152 Stock market and shareholders 157 Key figures 2015 REBIT (3) / SALES & SERVICES TRENDS 12% 12 IBA is a high-technology medical 10.9% company which concentrates 10% 10 its activities on proton therapy, radiopharmacy, particle accelerators 8 8% for industry, and dosimetry. 6% IBA is the worldwide leader in 6 the proton therapy market. 4 4% Listed on the NYSE Euronext Brussels. 2 2% 1 200 employees worldwide. 0% IBA operates in two areas: “Proton 0 Therapy and Other Accelerators ” and 2010 2011 2012 2013 2014 2015 “Dosimetry”. Key figures 2015 + 22.6% 332 2015 revenue increase EUR million Backlog in Proton Therapy & Other Accelerators OPERATING RESULTS 2014 2015 Change CAGR (1) (EUR 000) (EUR 000) (EUR 000) (%) 2014/2015 Sales and services 220 577 270 357 49 780 22.60% Gross margin 96 096 113 655 18.30% REBITDA (2) 28 321 33 710 5 389 19.00% REBITDA/Sales and services 12.80% 12.50% REBIT (3) 22 932 29 553 6 621 28.90% REBIT/Sales and services 10.40% 10.90% Net profit 24 294 61 189 36 895 151.90% (1) CAGR: compound annual growth rate (2) REBITDA: recurring earnings before interest, taxes, depreciation, and amortization. -
Dose Calculation Algorithms for External Radiation Therapy: an Overview for Practitioners
applied sciences Review Dose Calculation Algorithms for External Radiation Therapy: An Overview for Practitioners Fortuna De Martino 1, Stefania Clemente 2, Christian Graeff 3, Giuseppe Palma 4,*,† and Laura Cella 4,*,† 1 Post Graduate School in Medical Physics, University of Naples Federico II, 80131 Naples, Italy; [email protected] 2 Unit of Medical Physics and Radioprotection, A.O.U Policlinico Federico II, 80131 Naples, Italy; [email protected] 3 Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; [email protected] 4 Institute of Biostructure and Bioimaging, National Research Council (CNR), 80145 Naples, Italy * Correspondence: [email protected] (G.P.); [email protected] (L.C.) † These authors share senior authorship. Featured Application: Radiation therapy treatment planning. Abstract: Radiation therapy (RT) is a constantly evolving therapeutic technique; improvements are continuously being introduced for both methodological and practical aspects. Among the features that have undergone a huge evolution in recent decades, dose calculation algorithms are still rapidly changing. This process is propelled by the awareness that the agreement between the delivered and calculated doses is of paramount relevance in RT, since it could largely affect clinical outcomes. The Citation: De Martino, F.; Clemente, aim of this work is to provide an overall picture of the main dose calculation algorithms currently S.; Graeff, C.; Palma, G.; Cella, L. used in RT, summarizing their underlying physical models and mathematical bases, and highlighting Dose Calculation Algorithms for their strengths and weaknesses, referring to the most recent studies on algorithm comparisons. External Radiation Therapy: An This handy guide is meant to provide a clear and concise overview of the topic, which will prove Overview for Practitioners. -
Review White Paper (Pdf)
Brachytherapy: high precision, targeted radiotherapy Because life is for living Table of contents Executive summary 3 Introduction 4 Radiotherapy: present and future goals 5 Overview of brachytherapy 6 • Brachytherapy: high precision, targeted radiotherapy 6 Types of brachytherapy 7 Brachytherapy dosing 7 Brachytherapy efficacy and safety outcomes; patient benefits 8 • Brachytherapy in gynecological cancer 8 • Brachytherapy in prostate cancer 9 • Brachytherapy in breast cancer 12 • Brachytherapy in other cancers 14 • Brachytherapy in palliative care 15 Brachytherapy: setting benchmarks in radiation technology 15 • Advantages: technical and cost base 15 • Ongoing advances in brachytherapy result in improved outcomes and efficiency 16 Cost effectiveness: making efficient use of healthcare resources 17 Conclusions 19 Glossary 20 References 21 2 Brachytherapy: high precision, targeted radiotherapy Executive summary Radiotherapy is a key cornerstone of cancer care: this • The ability of brachytherapy to deliver high radiation White Paper reviews the role of brachytherapy – high doses over a short time period means patients can precision, targeted radiotherapy – in cancer treatment, complete treatment in days rather than the and discusses how it offers an effective, well tolerated weeks required for EBRT. For example, high dose rate radiation treatment option, tailored to the needs and (HDR) brachytherapy treatment for prostate cancer preferences of the individual patient. can be delivered in two treatment sessions, compared to several weeks with EBRT. This has important Brachytherapy combines two fundamental aims potential implications for patient compliance with of radiotherapy: an effective tumor dose with their radiotherapy treatment, as well as minimizing sparing of the surrounding tissue. Brachytherapy is impact on patients’ lives at the forefront of innovation in radiotherapy.