The Modern Technology of Radiation Oncology, Vol. 1

Total Page:16

File Type:pdf, Size:1020Kb

The Modern Technology of Radiation Oncology, Vol. 1 • Import a graphic of a cover onto the • Extract and save the page. 8 x 10 correct-sized page. • Insert the page to the beginning of the • Make a PDF. sample chapter in question. • Crop out the new page. +HUHLVDVDPSOHFKDSWHU IURPWKLVERRN The Modern 7KLVVDPSOHFKDSWHULVFRS\ULJKWHG DQGPDGHDYDLODEOHIRUSHUVRQDOXVH Technology RQO\1RSDUWRIWKLVFKDSWHUPD\EH of UHSURGXFHGRUGLVWULEXWHGLQDQ\ Radiation IRUPRUE\DQ\PHDQVZLWKRXWWKH Oncology SULRUZULWWHQSHUPLVVLRQRI0HGLFDO 3K\VLFV3XEOLVKLQJ A Compendium for Medical Physicists and Radiation Oncologists Editor s Jacob Van Dyk The Modern Technology of Radiation Oncology A Compendium for Medical Physicists and Radiation Oncologists Jacob Van Dyk Editor Medical Physics Publishing Madison, Wisconsin © 1999 by Jacob Van Dyk. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Printed in the United States of America First printing 1999 Library of Congress Cataloging-in-Publication Data The modern technology of radiation oncology / Jacob Van Dyk, editor. p. cm. Includes bibliographical references and index. ISBN 0-944838-38-3 (hardcover). – ISBN 0-944838-22-7 (softcover) 1. Cancer—Radiotherapy. 2. Medical physics. 3. Radiology, Medical. 4. Cancer—Radiotherapy—Equipment and supplies. I. Van Dyk, J. (Jake) [DNLM: 1. Neoplasms—radiotherapy. 2. Equipment Design. 3. Radiotherapy—instrumentation. 4. Radiotherapy—methods. 5. Technology, Radiologic. QZ 269 M6893 1999] RC271.R3M5935 1999 616.99’ 40642—dc21 DNLM/DLC for Library of Congress 99-31932 CIP ISBN 0-944838-38-3 (hardcover) ISBN 0-944838-22-7 (softcover) ISBN 978-1-930524-89-7 (2015 eBook edition) Medical Physics Publishing 4555 Helgesen Dr. Madison, WI 53718 1-800-442-5778 [email protected] www.medicalphysics.org Information given in this book is for instructional use only. Because of the possibility for human error and the poten- tial for change in the medical sciences, the reader is strongly cautioned to verify all information and procedures with an independent source before use. The editor, authors, and publisher cannot assume responsibility for the validity of all materials or for any damage or harm incurred as a result of the use of this information. ii Dedication In my personal life: To my wife Christine, and my children Tonia, Jon, Ben, and Amy, who have unwittingly sacrificed family time due to my professional commitments but who have knowingly shared their love and support. In my professional life: To Jack Cunningham who by example demonstrated that medical physics is much more than just a career. iii Contents Preface v Acknowledgments vi Contributors vii 1 Radiation Oncology Overview 1 2 Clinical Implementation of Technology and the Quality Assurance Process 19 3 Patient Immobilization 53 4 Simulators 95 5 CT Simulators 131 6 Simulator Computed Tomography 169 7 Imaging for Radiation Therapy Planning (MRI, Nuclear Medicine, Ultrasound) 191 8 Computerized Radiation Treatment Planning Systems 231 9 Kilovoltage X-rays 287 10 Cobalt-60 Teletherapy 313 11 Medical Accelerators 349 12 Beam Shaping and Intensity Modulation 437 13 Megavoltage Radiography for Treatment Verification 481 14 Radiation Oncology Information Management System 509 15 Tomotherapy 521 16 Stereotactic Irradiation 589 17 Special Techniques in Radiotherapy 641 17A Total Body Irradiation with Photon Beams 641 17B Total Skin Electron Irradiation 663 17C Intraoperative Radiation Therapy 679 18 Brachytherapy 695 19 Dose Measuring Tools 753 20 Proton Therapy 823 21 Neutron Therapy 871 22 Hyperthermia 919 22A Local Hyperthermia 919 22B Whole Body Hyperthermia 933 23 Photodynamic Therapy 941 24 Boron Neutron Capture Therapy 981 25 Monoclonal Antibody and Other Internal Emitter Therapies 1021 Acronyms 1043 Index 1049 iv Preface Radiation Oncology is a very technology intensive dis- evolving technologies and, thus, provides a compre- cipline of medicine. Complex, sophisticated equipment hensive overview. Anyone embarking on any of these is required to localize the tumor, to generate ionizing new procedures will be able to gain some basic insight radiation, and to deliver a high radiation dose to a as to what is required to make that procedure clinically three-dimensional target volume while sparing normal viable. tissues. A number of books have been written about the Nowhere can all these technologies be found in medical physics and clinical aspects of radiation oncol- one cancer therapy center. However, the staff of every ogy and treatment planning. The standard medical cancer center is involved in improving procedures by physics textbooks tend to discuss the basic concepts of either purchasing new equipment or by upgrading radiation interactions and dosimetry, and some of the existing equipment. This book is intended to be a guide technical aspects as related to treatment machines and for those embarking on these procedures. While the treatment planning. However, they generally do not body of each chapter is written at a level understand- address the design details of many of the practical tools able by medical physicists and radiation oncologists, that are required to prepare patients for treatment or additional detailed information for medical physicists that are used as part of the treatment process. Virtually is provided in the appendices at the end of some of the no textbook addresses the details of acceptance, com- chapters. missioning, and quality assurance of radiation therapy As the title indicates, the book is primarily equipment. intended for medical physicists and radiation oncolo- The purpose of this book is to describe the gists although it will also benefit radiation therapists details of the technology associated with radiation (radiographers) and dosimetrists, and to a lesser oncology. A special emphasis is placed on the design extent other allied professionals such as engineering of all the equipment allied with radiation treatment. In technologists, radiobiologists, and administrators. It addition, this book describes the procedures that are is intended to be both a reference text for those who required to implement this equipment into clinical ser- have been working in the field for some years as well vice (needs assessment, purchase, acceptance, and as an educational tool for those who are entering the commissioning) and, once it is in use, the quality field. It is assumed that the reader has a basic knowl- assurance that is required to keep the equipment oper- edge of medical physics as found in other standard ational at acceptable levels. In addition to describing all medical physics textbooks. the tools that are used in “standard” radiation treatment centers, this book addresses the less common or Jacob Van Dyk v Acknowledgments A sincere thank you: To Tomas Kron for seeding the concept of this book. To Jerry Battista for providing unending support, for being an excellent “sounding board,” and for reviewing a number of my chapters. To the authors and co-authors of the chapters of this book. Their contributions have given this book the quality that it is. To Ervin Podgorsak and Glenn Glasgow who graciously took on the additional challenge of providing more than one chapter. To Christina Woodward for sleuthing and resolving incomplete references. To members of the Medical Physics group at the London Regional Cancer Centre who have been consistent in their help and support. To Betsey Phelps and the staff at Medical Physics Publishing for making this book a reality. To Barb Barons for clerical support. vi Contributors* *Numbers in brackets refer to the chapter numbers Peter J. Biggs, Ph.D., D.A.B.R. [9] authored or co-authored by the contributor. Associate Professor and Radiation Biophysicist Radiation Oncology Department Jennifer S. Aldridge, M.S. [15] Massachusetts General Hospital Medical Physics Department Harvard Medical School University of Wisconsin Boston, Massachusetts, USA Madison, Wisconsin, USA Arthur L. Boyer, Ph.D., D.A.B.R., F.A.A.P.M [12] John P. Balog, Ph.D. [15] Professor and Director, Radiation Physics Medical Physics Department Stanford University School of Medicine University of Wisconsin Stanford University Madison, Wisconsin, USA Stanford, California, USA Robin B. Barnett, Ph.D., F.C.C.P.M. [8] Kenneth W. Brooks, Ph.D., D.A.B.R. [14] Supervisor, Radiation Treatment Planning District Manager and Delivery Support Varian Medical Systems Incorporated London Regional Cancer Centre Marietta, Georgia, USA Assistant Professor, Department of Oncology University of Western Ontario Paul M. Busse, M.D., Ph.D., D.A.B.R. [24] London, Ontario, Canada Associate Chairman Harvard Joint Center for Radiation Therapy Jerry J. Battista, Ph.D., F.C.C.P.M. [8] Assistant Professor of Radiation Oncology Director, Physics Research and Education Harvard Medical School London Regional Cancer Centre Boston, Massachusetts, USA Professor and Head, Division of Radiation Oncology Professor, Departments of Oncology, Medical Karen P. Doppke, M.S., D.A.B.R. [9] Biophysics and Adjunct Professor, Department of Associate in Radiation Oncology and Assistant Physics and Astronomy, University of Western Radiation Biophysicist Ontario Radiation Oncology Department London, Ontario, Canada Massachusetts General Hospital Harvard Medical School John Beatty, M.S., D.A.B.R. [9] Boston, Massachusetts, USA Associate in Radiation Oncology and Assistant in Radiation Biophysics Guang
Recommended publications
  • Internal Radiation Therapy, Places Radioactive Material Directly Inside Or Next to the Tumor
    Brachytherapy Brachytherapy is a type of radiation therapy used to treat cancer. It places radioactive sources inside the patient to kill cancer cells and shrink tumors. This allows your doctor to use a higher total dose of radiation to treat a smaller area in less time. Your doctor will tell you how to prepare and whether you will need medical imaging. Your doctor may use a computer program to plan your therapy. What is brachytherapy and how is it used? External beam radiation therapy (EBRT) directs high-energy x-ray beams at a tumor from outside the body. Brachytherapy, also called internal radiation therapy, places radioactive material directly inside or next to the tumor. It uses a higher total dose of radiation to treat a smaller area in less time than EBRT. Brachytherapy treats cancers throughout the body, including the: prostate - see the Prostate Cancer Treatment (https://www.radiologyinfo.org/en/info/pros_cancer) page cervix - see the Cervical Cancer Treatment (https://www.radiologyinfo.org/en/info/cervical-cancer-therapy) page head and neck - see the Head and Neck Cancer Treatment (https://www.radiologyinfo.org/en/info/hdneck) page skin breast - see the Breast Cancer Treatment (https://www.radiologyinfo.org/en/info/breast-cancer-therapy) page gallbladder uterus vagina lung - see the Lung Cancer Treatment (https://www.radiologyinfo.org/en/info/lung-cancer-therapy) page rectum eye Brachytherapy is seldom used in children. However, brachytherapy has the advantage of using a highly localized dose of radiation. This means that less radiation is delivered to surrounding tissue. This significantly decreases the risk of radiation-induced second malignancies, a serious concern in children.
    [Show full text]
  • 小型飛翔体/海外 [Format 2] Technical Catalog Category
    小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history.
    [Show full text]
  • Radiotherapy for Unresectable Locally Advanced Non-Small Cell Lung Cancer
    2112 Review Article Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy Tiantian Guo1,2#, Liqing Zou1,2#, Jianjiao Ni1,2, Xiao Chu1,2, Zhengfei Zhu1,2,3 1Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; 2Department of Oncology, Shanghai Medical College, 3Institute of Thoracic Oncology, Fudan University, Shanghai, China Contributions: (I) Conception and design: Z Zhu; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These two authors contributed equally to this work. Correspondence to: Zhengfei Zhu, MD. Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China. Email: [email protected]. Abstract: Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of immunotherapy and has raised important questions for future study, such as the future directions of radiation therapy for LA-NSCLC in the era of immunotherapy. Modern radiotherapy techniques such as three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) provide opportunities for improved target conformity and reduced normal-tissue exposure. However, the low-dose radiation volume brought by IMRT and its effects on the immune system deserve particular attention when combing radiotherapy and immunotherapy.
    [Show full text]
  • Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening
    Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® System by Taindra Neupane A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Professional Science Master Florida Atlantic University Boca Raton, FL December 2018 Copyright 2018 by Taindra Neupane ii Acknowledgements First, I would like to express my gratitude to my Advisor, Dr. Charles Shang for providing me the opportuinity to do this research at Lynn Cancer Institute, Boca Raton Regional Hospital at Boca Raton and his guidance, enthusiasm and motivation which helped me to accomplish this reasearch. I would also like to thank my committee members, Dr. Theodora Leventouri, and Dr. Silvia Pella for their constructive guidance and support. I am particularly grateful to Dr. Theodora Leventouri, Professor of Physics, for her relentless encouragement, direction and assistance for my academics at the department. I am also thankful to all the faculty members and fellow graduate students in the department of physics who contributed to my learning process directly and indirectly. Finally, I would like to thank Dr. Francescon and Dr. Reynaert for providing the sample input files, the EGSnrc Google Plus Forum for answering my questions during the MC simulations, Musfiqur Rahaman for his help in technical problems, and my family members for their continuous support. iv Abstract Author: Taindra Neupane Title: Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® System Institution: Florida Atlantic University Thesis Co-Advisors: Dr.
    [Show full text]
  • Standards for Radiation Oncology
    Standards for Radiation Oncology Radiation Oncology is the independent field of medicine which deals with the therapeutic applications of radiant energy and its modifiers as well as the study and management of cancer and other diseases. The American College of Radiation Oncology (ACRO) is a nonprofit professional organization whose primary purposes are to advance the science of radiation oncology, improve service to patients, study the socioeconomic aspects of the practice of radiation oncology, and provide information to and encourage continuing education for radiation oncologists, medical physicists, and persons practicing in allied professional fields. As part of its mission, the American College of Radiation Oncology has developed a Practice Accreditation Program, consisting of standards for Radiation Oncology and standards for Physics/External Beam Therapy. Accreditation is a voluntary process in which professional peers identify standards indicative of a high quality practice in a given field, and which recognizes entities that meet these high professional standards. Each standard in ACRO’s Practice Accreditation Program requires extensive peer review and the approval of the ACRO Standards Committee as well as the ACRO Board of Chancellors. The standards recognize that the safe and effective use of ionizing radiation requires specific training, skills and techniques as described in this document. The ACRO will periodically define new standards for radiation oncology practice to help advance the science of radiation oncology and to improve the quality of service to patients throughout the United States. Existing standards will be reviewed for revision or renewal as appropriate on their third anniversary or sooner, if indicated. The ACRO standards are not rules, but rather attempts to define principles of practice that are indicative of high quality care in radiation oncology.
    [Show full text]
  • Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
    Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81.
    [Show full text]
  • Preparing for Nuclear Waste Transportation
    Preparing for Nuclear Waste Transportation Technical Issues that Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 U.S. Nuclear Waste Technical Review Board This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Preparing for Nuclear Waste Transportation Technical Issues That Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Jean M. Bahr, Ph.D., Chair University of Wisconsin, Madison, Wisconsin Steven M. Becker, Ph.D. Old Dominion University, Norfolk, Virginia Susan L. Brantley, Ph.D. Pennsylvania State University, University Park, Pennsylvania Allen G. Croff, Nuclear Engineer, M.B.A. Vanderbilt University, Nashville, Tennessee Efi Foufoula-Georgiou, Ph.D. University of California Irvine, Irvine, California Tissa Illangasekare, Ph.D., P.E. Colorado School of Mines, Golden, Colorado Kenneth Lee Peddicord, Ph.D., P.E. Texas A&M University, College Station, Texas Paul J. Turinsky, Ph.D. North Carolina State University, Raleigh, North Carolina Mary Lou Zoback, Ph.D. Stanford University, Stanford, California Note: Dr. Linda Nozick of Cornell University served as a Board member from July 28, 2011, to May 9, 2019. During that time, Dr. Nozick provided valuable contributions to this report. iii This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Staff Executive Staff Nigel Mote Executive Director Neysa Slater-Chandler Director of Administration Senior Professional Staff* Bret W.
    [Show full text]
  • The Impact of County-Level Radiation Oncologist Density on Prostate Cancer Mortality in the United States
    Prostate Cancer and Prostatic Diseases (2012) 15, 391 -- 396 & 2012 Macmillan Publishers Limited All rights reserved 1365-7852/12 www.nature.com/pcan ORIGINAL ARTICLE The impact of county-level radiation oncologist density on prostate cancer mortality in the United States S Aneja1 and JB Yu1,2,3 BACKGROUND: The distribution of radiation oncologists across the United States varies significantly among geographic regions. Accompanying these variations exist geographic variations in prostate cancer mortality. Prostate cancer outcomes have been linked to variations in urologist density, however, the impact of geographic variation in the radiation oncologist workforce and prostate cancer mortality has yet to be investigated. The goal of this study was to determine the effect of increasing radiation oncologist density on regional prostate cancer mortality. METHODS: Using county-level prostate cancer mortality data from the National Cancer Institute and Centers for Disease Control as well as physician workforce and health system data from the Area Resource File a regression model was built for prostate cancer mortality controlling for categorized radiation oncologist density, urologist density, county socioeconomic factors and pre-existing health system infrastructure. RESULTS: There was statistically significant reduction in prostate cancer mortality (3.91--5.45% reduction in mortality) in counties with at least 1 radiation oncologist compared with counties lacking radiation oncologists. However, increasing the density of radiation oncologists beyond 1 per 100 000 residents did not yield statistically significant incremental reductions in prostate cancer mortality. CONCLUSIONS: The presence of at least one radiation oncologist is associated with significant reductions in prostate cancer mortality within that county. However, the incremental benefit of increasing radiation oncologist density exhibits a plateau effect providing marginal benefit.
    [Show full text]
  • Automation of the Monte Carlo Simulation of Medical Linear
    doctoral dissertation AUTOMATIONOFTHEMONTECARLOSIMULATIONOF MEDICALLINEARACCELERATORS miguel lázaro rodríguez castillo Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Barcelona - November 20th, 2015 Co-supervisors: Priv.-Doz. Dr. Lorenzo Brualla Klinik- und Poliklinik für Strahlentherapie Universitätsklinikum Essen Universität Duisburg-Essen Dr. Josep Sempau Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Para mis padres, mi esposa y mis hijos The enjoyment of one’s tools is an essential ingredient of successful work — Donald E. Knuth PUBLICATIONS Publications in scientific journals related to this thesis: • M. Rodriguez, J. Sempau, A. Fogliata, L. Cozzi, W. Sauerwein, and L. Brualla. A geometrical model for the Monte Carlo simu- lation of the TrueBeam linac. Phys. Med. Biol., 60:N219–N229, 2015. • M. Rodriguez, J. Sempau, and L. Brualla. Study of the electron transport parameters used in penelope for the Monte Carlo simulation of linac targets. Med. Phys., 42:2877–2881, 2015. • M. F. Belosi, M. Rodriguez, A. Fogliata, L. Cozzi, J. Sempau, A. Clivio, G. Nicolini, E. Vanetti, H. Krauss, C. Khamphan, P. Fe- noglietto, J. Puxeu, D. Fedele, P. Mancosu, and L. Brualla. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med. Phys., 41:051707, 2014. • M. Rodriguez, J. Sempau, and L. Brualla. PRIMO: A graphi- cal environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther. Onkol., 189:881–886, 2013. • M. Rodriguez, J. Sempau, and L. Brualla. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys. Med. Biol., 57:3013–3024, 2012. Additional publication in a scientific journal related to this thesis: • M.
    [Show full text]
  • Dose Calculation Algorithms for External Radiation Therapy: an Overview for Practitioners
    applied sciences Review Dose Calculation Algorithms for External Radiation Therapy: An Overview for Practitioners Fortuna De Martino 1, Stefania Clemente 2, Christian Graeff 3, Giuseppe Palma 4,*,† and Laura Cella 4,*,† 1 Post Graduate School in Medical Physics, University of Naples Federico II, 80131 Naples, Italy; [email protected] 2 Unit of Medical Physics and Radioprotection, A.O.U Policlinico Federico II, 80131 Naples, Italy; [email protected] 3 Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; [email protected] 4 Institute of Biostructure and Bioimaging, National Research Council (CNR), 80145 Naples, Italy * Correspondence: [email protected] (G.P.); [email protected] (L.C.) † These authors share senior authorship. Featured Application: Radiation therapy treatment planning. Abstract: Radiation therapy (RT) is a constantly evolving therapeutic technique; improvements are continuously being introduced for both methodological and practical aspects. Among the features that have undergone a huge evolution in recent decades, dose calculation algorithms are still rapidly changing. This process is propelled by the awareness that the agreement between the delivered and calculated doses is of paramount relevance in RT, since it could largely affect clinical outcomes. The Citation: De Martino, F.; Clemente, aim of this work is to provide an overall picture of the main dose calculation algorithms currently S.; Graeff, C.; Palma, G.; Cella, L. used in RT, summarizing their underlying physical models and mathematical bases, and highlighting Dose Calculation Algorithms for their strengths and weaknesses, referring to the most recent studies on algorithm comparisons. External Radiation Therapy: An This handy guide is meant to provide a clear and concise overview of the topic, which will prove Overview for Practitioners.
    [Show full text]
  • Nuclear Engineering
    Academic Program Review Self-Study Report February 8-11, 2015 Table of Contents I. Executive Summary of the Self-Study Report ..................................................... 1 A. Message from the Department Head and Graduate Program Adviser ................................ 1 B. Charge to the External Review Team .................................................................................. 2 II. Introduction to Department ..................................................................................3 A. Brief departmental history ................................................................................................... 3 B. Mission and goals ................................................................................................................ 3 C. Administrative structure ...................................................................................................... 4 D. Advisory Council ................................................................................................................. 7 E. Department and program resources ..................................................................................... 8 1. Facilities ........................................................................................................................... 8 2. Institutes and Centers ..................................................................................................... 11 3. Finances ........................................................................................................................
    [Show full text]
  • Proton Beam Radiotherapy
    DESIGN AND SIMULATION OF A PASSIVE-SCATTERING NOZZLE IN PROTON BEAM RADIOTHERAPY A Thesis by FADA GUAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Health Physics DESIGN AND SIMULATION OF A PASSIVE-SCATTERING NOZZLE IN PROTON BEAM RADIOTHERAPY A Thesis by FADA GUAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, John W. Poston, Sr. Committee Members, Leslie A. Braby Michael A. Walker Head of Department, Raymond J. Juzaitis December 2009 Major Subject: Health Physics iii ABSTRACT Design and Simulation of a Passive-Scattering Nozzle in Proton Beam Radiotherapy. (December 2009) Fada Guan, B.E., Tsinghua University, China Chair of Advisory Committee: Dr. John W. Poston, Sr. Proton beam radiotherapy is an emerging treatment tool for cancer. Its basic principle is to use a high-energy proton beam to deposit energy in a tumor to kill the cancer cells while sparing the surrounding healthy tissues. The therapeutic proton beam can be either a broad beam or a narrow beam. In this research, we mainly focused on the design and simulation of the broad beam produced by a passive double-scattering system in a treatment nozzle. The NEU codes package is a specialized design tool for a passive double- scattering system in proton beam radiotherapy. MCNPX is a general-purpose Monte Carlo radiation transport code. In this research, we used the NEU codes package to design a passive double-scattering system, and we used MCNPX to simulate the transport of protons in the nozzle and a water phantom.
    [Show full text]