Automation of the Monte Carlo Simulation of Medical Linear
Total Page:16
File Type:pdf, Size:1020Kb
doctoral dissertation AUTOMATIONOFTHEMONTECARLOSIMULATIONOF MEDICALLINEARACCELERATORS miguel lázaro rodríguez castillo Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Barcelona - November 20th, 2015 Co-supervisors: Priv.-Doz. Dr. Lorenzo Brualla Klinik- und Poliklinik für Strahlentherapie Universitätsklinikum Essen Universität Duisburg-Essen Dr. Josep Sempau Institut de Tecniques` Energètiques Universitat Politècnica de Catalunya Para mis padres, mi esposa y mis hijos The enjoyment of one’s tools is an essential ingredient of successful work — Donald E. Knuth PUBLICATIONS Publications in scientific journals related to this thesis: • M. Rodriguez, J. Sempau, A. Fogliata, L. Cozzi, W. Sauerwein, and L. Brualla. A geometrical model for the Monte Carlo simu- lation of the TrueBeam linac. Phys. Med. Biol., 60:N219–N229, 2015. • M. Rodriguez, J. Sempau, and L. Brualla. Study of the electron transport parameters used in penelope for the Monte Carlo simulation of linac targets. Med. Phys., 42:2877–2881, 2015. • M. F. Belosi, M. Rodriguez, A. Fogliata, L. Cozzi, J. Sempau, A. Clivio, G. Nicolini, E. Vanetti, H. Krauss, C. Khamphan, P. Fe- noglietto, J. Puxeu, D. Fedele, P. Mancosu, and L. Brualla. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med. Phys., 41:051707, 2014. • M. Rodriguez, J. Sempau, and L. Brualla. PRIMO: A graphi- cal environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther. Onkol., 189:881–886, 2013. • M. Rodriguez, J. Sempau, and L. Brualla. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys. Med. Biol., 57:3013–3024, 2012. Additional publication in a scientific journal related to this thesis: • M. Rodriguez. PENLINAC: extending the capabilities of the Monte Carlo code penelope for the simulation of therapeutic beams. Phys. Med. Biol., 53:4573–4593, 2008. Published technical reports: • L. Brualla, M. Rodriguez, and J. Sempau. PRIMO User’s Manual. http://www.primoproject.net, 2015. • L. Brualla, M. Rodriguez, and J. Sempau. PRIMO Quick Start Guide. http://www.primoproject.net, 2014. vii Manuscript submitted to a scientific journal: • L. Brualla, M. Rodriguez, and A. Lallena. Review Article. Monte Carlo systems used for treatment planning and dose verification of linac external beam radiotherapy. Submitted to Med. Phys.. Manuscript in preparation to be submitted to a scientific journal: • M. Rodriguez, L. Brualla, and J. Sempau. Optimization of the efficiency in Monte Carlo simulations of linacs that employ mul- tiple variance-reduction techniques. Presentations in scientific congresses: • L. Brualla, M. Rodriguez, and J. Sempau. PRIMO: A graphical user-friendly environment for the automatic Monte Carlo simulation of linacs and dose distributions in patients. Awarded with the Poster Prize during the annual Congress of the Deutsche Gesellschaft für Radioonkologie (German Society for Radiation Oncology, DEGRO). 2012. Published in Strahlenther. Onkol., 188:151, 2012. • L. Brualla, J. Sempau, and M. Rodriguez. Towards bridging the gap between Monte Carlo and the clinical environment: Variance- reduction techniques for linac simulation with penelope / PRIMO. Poster presentation in the Congress of the European Society for Radiotherapy and Oncology. ESTRO Congress 31. Barcelona. May, 2012. Published in Radiother. Oncol., 103:S313, 2012. • L. Brualla, M. Rodriguez, and J. Sempau. PRIMO: A graphical environment for the automatic simulation of Varian and Elekta linacs with penelope. Oral presentation in the Congress of the Euro- pean Society for Radiotherapy and Oncology. ESTRO Congress 31. Barcelona. May, 2012. Published in Radiother. Oncol., 103:S246, 2012. • L. Brualla, M. Rodriguez, L. Cozzi, A. Fogliata, W. Sauerwein, and J. Sempau. An ungenuine complete description of the TrueBeam linac for Monte Carlo simulation. Electronic Poster presentation in the ESTRO Congress 33. Vienna. April 4-9, 2014. Published in Radiother. Oncol., 111:S12–S13, 2014. • M. Rodriguez, L. Brualla, and J. Sempau. PRIMO. A graphical en- vironment for the Monte Carlo simulation of Varian and Elekta linacs. Pre-congress course in the XV Workshop on Nuclear Physics and IX International Symposium on Nuclear and Related Tech- niques. Havana. February 9, 2015. viii ACKNOWLEDGMENTS It is a fortunate and joyful occasion when supervisors and student work as a united team. Degrees aside, they all row—sometimes sail— to one goal. I thank Lorenzo Brualla and Josep Sempau for being my team mates. Along this journey I have learned a world from them. I want to express my deep gratitude to the following people: Dr. Luca Cozzi, Clinical Research Scientist at the Istituto Clinico Hu- manitas, Milan, for his help and support in the distribution of PRIMO as well as for his valuable advice. Prof. Dr. med. Wolfgang Sauerwein, leitender Oberarzt of the Strahlen- klinik at the Universitätsklinikum Essen, for support and help in the distribution of PRIMO. Prof. Dr. Pedro Andreo from the Karolinska Institutet, Sweden, for beta testing the PRIMO system and help in its dissemination. Ms. Antonella Fogliata, medical physicist at the Istituto Clinico Hu- manitas, Milan, for beta testing the PRIMO system and experimental measurements on the TrueBeam linear accelerator. Ms. Francesca Belosi, medical physicist at the Paul Scherrer Institut in Villigen, Switzerland, for extensively beta testing the PRIMO system. Mr. Marcelino Hermida, medical physicist at the Hospital Universi- tari Vall d’Hebron in Barcelona, for exhaustive testing the code and valuable recomendations. Prof. Dr. Antonio M. Lallena of the Unversidad de Granada, for his valuable advice in reviewing other Monte Carlo systems. Ms. Nuria Escobar, medical physicist at the Universitätsklinikum Aachen for providing experimental measurements on the Elekta linear accel- erator. Dipl.- Phys. Andrea Flühs, medical physicist at the Universitätsklinikum Essen for measurements on Varian linac machines and valuable com- ments about the PRIMO system. ix Mr. Josep Pujal, system administrator of the Argos computer cluster at the Universitat Politècnica de Catalunya. Mr. Michael Nieporte, system administrator of the Contessa com- puter cluster at the Universitätsklinikum Essen. Ms. Ina Grübel, documentalist of the Strahlenklinik at the Universität- sklinikum Essen. To the many PRIMO users, for their comments and suggestions that continuously help us to improve the code. I am also grateful to the following institutions that have supported my research: The Deutsche Forschungsgemeinschaft (projects BR 4043/1-1 and BR 4043/3-1). The Spanish Ministerio de Economia y Competitividad (project FIS2012- 38480). The Zentrale Informationstechnik at the Universitätsklinikum Essen. The program of Becas de la Cátedra de Seguridad Nuclear ARGOS supported by the Consejo de Seguridad Nuclear and the Escola Tèc- nica Superior d’Enginyeria Industrial de Barcelona for granting me travel stipends in the years 2009, 2010, 2012, 2013 and 2014. The IFORES program of the Medizinische Fakultät at the Universität Duisburg-Essen. The Grup Consolidat 2014SGR846 from the Spanish Generalitat de Catalunya. x CONTENTS List of Figures xiii Listings xv Acronyms xvi 1 introduction1 1.1 Background . 1 1.2 Objectives . 2 1.3 Radiation therapy . 2 1.4 The medical linear accelerator (linac) . 3 1.5 Modern treatment modalities . 7 1.6 Treatment planning . 8 1.7 The Monte Carlo method for radiation transport . 10 1.8 Variance-reduction techniques . 13 1.8.1 The Monte Carlo code penelope ......... 14 1.8.2 Simulation of linear accelerators . 15 1.8.3 Phase-space files . 17 1.8.4 Dose assessment in the patient . 19 1.9 Outline of the thesis . 21 2 monte carlo systems used for treatment plan- ning and dose verification of linac external beam radiotherapy 25 3 primo: a graphical environment for the simula- tion of varian and elekta linacs 67 4 a combined approach of variance-reduction tech- niques for the efficient monte carlo simulation of linacs 75 5 optimization of the efficiency in monte carlo simulations of linacs that employ multiple variance- reduction techniques 89 6 study of the electron transport parameters used in penelope for the monte carlo simulation of linac targets 101 7 monte carlo simulation of truebeam flattening- filter-free beams using varian phase-space files: comparison with experimental data. 107 8 a geometrical model for the monte carlo simu- lation of the truebeam linac 119 9 summary and conclusions 131 a primo distribution 133 b generation of linac geometries 135 c glass code 157 c.1 Software tools and techniques . 157 xi xii contents c.2 Algorithms . 158 d primo: user’s manual and quick start guide 177 references 286 LISTOFFIGURES Figure 1 Schematic diagram of a typical medical linear accelerator with the accelerating waveguide mo- unted parallel to the gantry rotation axis. Four major systems can be identified, namely, the in- jection system, the RF system, the beam transport system and the beam collimation and monitoring system which is represented twice, in its typi- cal configuration for a photon beam (a) and an electron beam (b). 3 Figure 2 Degrees of freedom of the treatment head and table of a linac. 5 Figure 3 A 80-leaf multileaf collimator. Adapted from http://newsroom.varian.com........... 6 Figure 4 A radiation field from a BEV perspective. The field shape is adjusted to the PTV contour (in red) with the MLC. The projection of the pa- tient in this perspective is obtained with a dig- itally reconstructed radiograph (DRR). 8 Figure 5 Examples of Varian and Elekta linear accelera- tor geometries generated with the tools devel- oped in this thesis. 17 Figure 6 Above: Views of the coded geometry of the Elekta MLCi. The upper view is a transversal section of the MLC showing the fan-shaped ar- rangement of the leaves. The lower view is a lateral section of a leaf (in a different scale). Colors differentiate materials (at left) and ge- ometry elements (at right). Below: a section of the coded geometry of a Varian Millennium 120-leaf MLC with a similar leaf arrangement to the MLC shown in figure 3........... 18 Figure 7 Data flow among the layered components of PRIMO.