A Framework for Quality Radiation Oncology Care
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comprehensive Qa for Radiation Oncology
AAPM REPORT NO. 46 COMPREHENSIVE QA FOR RADIATION ONCOLOGY Published for the American Association of Physicists in Medicine by the American Institute of Physics AAPM REPORT NO. 46 COMPREHENSIVE QA FOR RADIATION ONCOLOGY REPORT OF TASKGROUP NO.40 RADIATION THERAPY COMMITTEE AAPM Members Gerald J. Kutcher, TG Chair Lawrence Coia Michael Gillin William F. Hanson Steven Leibel Robert J. Morton Jatinder R. Palta James A. Purdy Lawrence E. Reinstein Goran K. Svensson Mona Weller Linda Wingfield Reprinted from MEDICAL PHYSICS, Volume 21, Issue 4, 1994 April 1994 Published by the American Association of Physicists in Medicine DISCLAIMER: This publication is based on sources and information believed to be reliable, but the AAPM and the editors disclaim any warranty or liability based on or relating to the contents of this publication. The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement. Further copies of this report may be obtained from: AAPM One Physics Ellipse College Park, MD 20740-3846 301/209-3350 International Standard Book Number: l-56396-401 -5 Copyright © 1994 by the American Association of Physicists in Medicine All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Printed in the United States of America Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40 Gerald J. Kutcher Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 Lawrence Coia Department of Radiation Oncology, Fox Chase Cancer Center/University of Pennsylvania, Philadelphia, Pennsylvania 19111 Michael Gillin Radiation Therapy Department, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 William F. -
Internal Radiation Therapy, Places Radioactive Material Directly Inside Or Next to the Tumor
Brachytherapy Brachytherapy is a type of radiation therapy used to treat cancer. It places radioactive sources inside the patient to kill cancer cells and shrink tumors. This allows your doctor to use a higher total dose of radiation to treat a smaller area in less time. Your doctor will tell you how to prepare and whether you will need medical imaging. Your doctor may use a computer program to plan your therapy. What is brachytherapy and how is it used? External beam radiation therapy (EBRT) directs high-energy x-ray beams at a tumor from outside the body. Brachytherapy, also called internal radiation therapy, places radioactive material directly inside or next to the tumor. It uses a higher total dose of radiation to treat a smaller area in less time than EBRT. Brachytherapy treats cancers throughout the body, including the: prostate - see the Prostate Cancer Treatment (https://www.radiologyinfo.org/en/info/pros_cancer) page cervix - see the Cervical Cancer Treatment (https://www.radiologyinfo.org/en/info/cervical-cancer-therapy) page head and neck - see the Head and Neck Cancer Treatment (https://www.radiologyinfo.org/en/info/hdneck) page skin breast - see the Breast Cancer Treatment (https://www.radiologyinfo.org/en/info/breast-cancer-therapy) page gallbladder uterus vagina lung - see the Lung Cancer Treatment (https://www.radiologyinfo.org/en/info/lung-cancer-therapy) page rectum eye Brachytherapy is seldom used in children. However, brachytherapy has the advantage of using a highly localized dose of radiation. This means that less radiation is delivered to surrounding tissue. This significantly decreases the risk of radiation-induced second malignancies, a serious concern in children. -
Practice Standards for Medical Imaging and Radiation Therapy
The ASRT Practice Standards for Medical Imaging and Radiation Therapy Radiation Therapy ©2019 American Society of Radiologic Technologists. All rights reserved. Reprinting all or part of this document is prohibited without advance written permission of the ASRT. Send reprint requests to the ASRT Publications Department, 15000 Central Ave. SE, Albuquerque, NM 87123-3909. Effective June 23, 2019 Table of Contents Preface .......................................................................................................................................................... 1 Format ....................................................................................................................................................... 1 Introduction .................................................................................................................................................. 3 Definition .................................................................................................................................................. 3 Education and Certification ...................................................................................................................... 5 Medical Imaging and Radiation Therapy Scope of Practice .......................................................................... 6 Standards ...................................................................................................................................................... 8 Standard One – Assessment .................................................................................................................... -
PART I GENERAL PROVISIONS R12 64E-5.101 Definitions
64E-5 Florida Administrative Code Index PART I GENERAL PROVISIONS R12 64E-5.101 Definitions ................................................................................................. I-1 64E-5.102 Exemptions ............................................................................................. I-23 64E-5.103 Records ................................................................................................... I-24 64E-5.104 Tests ... ................................................................................................... I-24 64E-5.105 Prohibited Use ........................................................................................ I-24 64E-5.106 Units of Exposure and Dose ................................................................... I-25 64E-5 Florida Administrative Code Index 64E-5 Florida Administrative Code Index PART II LICENSING OF RADIOACTIVE MATERIALS R2 64E-5.201 ...... Licensing of Radioactive Material .............................................................. II-1 64E-5.202 ...... Source Material - Exemptions .................................................................... II-2 R12 64E-5.203 ...... Radioactive Material Other than Source Material - Exemptions ................. II-4 SUBPART A LICENSE TYPES AND FEES R12 64E-5.204 ..... Types of Licenses ..................................................................................... II-13 SUBPART B GENERAL LICENSES 64E-5.205 ..... General Licenses - Source Material ......................................................... -
Standards for Radiation Oncology
Standards for Radiation Oncology Radiation Oncology is the independent field of medicine which deals with the therapeutic applications of radiant energy and its modifiers as well as the study and management of cancer and other diseases. The American College of Radiation Oncology (ACRO) is a nonprofit professional organization whose primary purposes are to advance the science of radiation oncology, improve service to patients, study the socioeconomic aspects of the practice of radiation oncology, and provide information to and encourage continuing education for radiation oncologists, medical physicists, and persons practicing in allied professional fields. As part of its mission, the American College of Radiation Oncology has developed a Practice Accreditation Program, consisting of standards for Radiation Oncology and standards for Physics/External Beam Therapy. Accreditation is a voluntary process in which professional peers identify standards indicative of a high quality practice in a given field, and which recognizes entities that meet these high professional standards. Each standard in ACRO’s Practice Accreditation Program requires extensive peer review and the approval of the ACRO Standards Committee as well as the ACRO Board of Chancellors. The standards recognize that the safe and effective use of ionizing radiation requires specific training, skills and techniques as described in this document. The ACRO will periodically define new standards for radiation oncology practice to help advance the science of radiation oncology and to improve the quality of service to patients throughout the United States. Existing standards will be reviewed for revision or renewal as appropriate on their third anniversary or sooner, if indicated. The ACRO standards are not rules, but rather attempts to define principles of practice that are indicative of high quality care in radiation oncology. -
Intensity-Modulated Radiation Therapy (Imrt) Hs-094
INTENSITY-MODULATED RADIATION THERAPY (IMRT) HS-094 Easy Choice Health Plan, Inc. Exactus Pharmacy Solutions, Inc. Harmony Health Plan of Illinois, Inc. Missouri Care, Incorporated WellCare Health Insurance of Arizona, Inc., operating in Hawai‘i as ‘Ohana Health Plan, Inc. WellCare of Kentucky, Inc. WellCare Health Plans of Kentucky, Inc. WellCare Health Plans of New Jersey, Inc. WellCare of Connecticut, Inc. WellCare of Florida, Inc., operating in Florida as Staywell Intensity-Modulated WellCare of Georgia, Inc. Radiation Therapy WellCare of Louisiana, Inc. Policy Number: HS-094 WellCare of New York, Inc. WellCare of South Carolina, Inc. Original Effective Date: 4/2/2009 WellCare of Texas, Inc. Revised Date(s): 4/30/2010; 4/30/2011; WellCare Prescription Insurance, Inc. 4/5/2012; 4/11/2013; 3/6/2014; 3/5/2015; Windsor Health Plan, Inc. 3/3/2016 APPLICATION STATEMENT The application of the Clinical Coverage Guideline is subject to the benefit determinations set forth by the Centers for Medicare and Medicaid Services (CMS) National and Local Coverage Determinations and state-specific Medicaid mandates, if any. Clinical Coverage Guideline page 1 Original Effective Date: 4/2/2009 - Revised: 4/30/2010, 4/30/2011, 4/5/2012, 4/11/2013, 3/6/2014, 3/5/2015, 3/3/2016 INTENSITY-MODULATED RADIATION THERAPY (IMRT) HS-094 DISCLAIMER The Clinical Coverage Guideline is intended to supplement certain standard WellCare benefit plans. The terms of a member’s particular Benefit Plan, Evidence of Coverage, Certificate of Coverage, etc., may differ significantly from this Coverage Position. For example, a member’s benefit plan may contain specific exclusions related to the topic addressed in this Clinical Coverage Guideline. -
1 Work-Related Musculoskeletal Disorders in Radiation Therapists
Work-related Musculoskeletal Disorders in Radiation Therapists: An Exploration of Self-Reported Symptoms Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Haley Griffin, B.S. Graduate Program in Allied Medicine The Ohio State University 2018 Thesis Committee Kevin D. Evans, PhD, Advisor Carolyn M. Sommerich, PhD, CPE Maryanna Klatt, PhD 1 Copyrighted by Haley Griffin 2018 2 Abstract This study explores the self-reported symptoms of musculoskeletal disorders in Radiation Therapists (RTT) registered by the American Registry of Radiologic Technologists (ARRT), in the United States. There was a gap in the literature focusing on RTTs unique set of workplace injuries. Utilizing a nationwide survey the anatomical areas where the most RTTs experienced pain were discovered along with other demographic factors in order to seek relationships between this demographic data with the occurrence of musculoskeletal symptoms. Different aspects of perceived physical and mental demand will also be discussed. Suggestions for possible future directions to ameliorate this problem will also be discussed, such as ergonomic training. The multivariate interaction theory describes how injury causation is due to biomechanical hazards in the workplace. This explains how movements while transferring or positioning patients for treatment has the potential for RTTs to incur musculoskeletal injuries. Data was collected by administering a nationwide online survey to a large convenient sample of RTTs. The instrument contained questions about what common work related symptoms are encountered in the profession. Data analysis allowed for exploring some relationships between different variables, their occurrence, and the anatomical site of musculoskeletal symptoms. -
Manual for ACRO Accreditation March 2016
American College of Radiation Oncology Manual for ACRO Accreditation March 2016 Powered by Patients First Our Focus is Radiation Oncology Safety! ACKNOWLEDGMENTS ACRO expresses its appreciation for the significant contribution and leadership of Jaroslaw Hepel, MD, FACRO, Chair of the ACRO Standards Committee, and ACRO Accreditation Medical Director, for his un- tiring efforts to bring this version of the Manual for ACRO Accreditation to publication. Thanks also go to Arve Gillette, MD, FACRO, ACRO Chancellor and a former President, and ACRO Ac- creditation Medical Director during 2011, who initiated most of the new procedures incorporated in the accreditation program when it was reintroduced after a board imposed administrative review for most of 2010. Appreciation also is expressed to Ralph Dobelbower, MD, FACRO, the founding medical director of ACRO Accreditation; Gregg Cotter, MD, FACRO, medical director after Dr. Dobelbower; and Ishmael Parsai, PhD, FACRO, physics chairman for many years; for their collective leadership in building the accreditation program from its inception in 1995. In addition, appreciation is expressed for ongoing support and commitment to the accreditation process to all the following ACRO members who have contributed, and continue to contribute, to the success of ACRO Accreditation: ACRO Executive Committee | Drs. James Welsh (President), Eduardo Fernandez (Vice President), William Rate (Secretary-Treasurer), and Arno Mundt (Chairman) ACRO Chancellors | Drs. Joanne Dragun, Gregg Franklin, Shane Hopkins, Sheila Rege, Charles Thomas, II, Harvey Wolkov, Catheryn Yashar, and Luther Brady (ex officio) ACRO Accreditation Disease Site Team Leaders | Dr. Jaroslaw Hepel (Breast Cancer); Drs. William Regine & Navesh Sharma (Gastrointestinal Cancer); Dr. Peter Orio III (Genitourinary Cancer); Dr. -
Radiation and Risk: Expert Perspectives Radiation and Risk: Expert Perspectives SP001-1
Radiation and Risk: Expert Perspectives Radiation and Risk: Expert Perspectives SP001-1 Published by Health Physics Society 1313 Dolley Madison Blvd. Suite 402 McLean, VA 22101 Disclaimer Statements and opinions expressed in publications of the Health Physics Society or in presentations given during its regular meetings are those of the author(s) and do not necessarily reflect the official position of the Health Physics Society, the editors, or the organizations with which the authors are affiliated. The editor(s), publisher, and Society disclaim any responsibility or liability for such material and do not guarantee, warrant, or endorse any product or service mentioned. Official positions of the Society are established only by its Board of Directors. Copyright © 2017 by the Health Physics Society All rights reserved. No part of this publication may be reproduced or distributed in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. Printed in the United States of America SP001-1, revised 2017 Radiation and Risk: Expert Perspectives Table of Contents Foreword……………………………………………………………………………………………………………... 2 A Primer on Ionizing Radiation……………………………………………………………………………... 6 Growing Importance of Nuclear Technology in Medicine……………………………………….. 16 Distinguishing Risk: Use and Overuse of Radiation in Medicine………………………………. 22 Nuclear Energy: The Environmental Context…………………………………………………………. 27 Nuclear Power in the United States: Safety, Emergency Response Planning, and Continuous Learning…………………………………………………………………………………………….. 33 Radiation Risk: Used Nuclear Fuel and Radioactive Waste Disposal………………………... 42 Radiation Risk: Communicating to the Public………………………………………………………… 45 After Fukushima: Implications for Public Policy and Communications……………………. 51 Appendix 1: Radiation Units and Measurements……………………………………………………. 57 Appendix 2: Half-Life of Some Radionuclides…………………………………………………………. 58 Bernard L. -
Nrc Regulatory Issue Summary 2005-23 Clarification of the Physical Presence Requirement During Gamma Stereotactic Radiosurgery Treatments
UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR MATERIAL SAFETY AND SAFEGUARDS WASHINGTON, D.C. 20555 October 7, 2005 NRC REGULATORY ISSUE SUMMARY 2005-23 CLARIFICATION OF THE PHYSICAL PRESENCE REQUIREMENT DURING GAMMA STEREOTACTIC RADIOSURGERY TREATMENTS ADDRESSEES All gamma stereotactic radiosurgery (GSR) licensees. INTENT The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory issue summary (RIS) to clarify the definition of the term “physically present,” as used in 10 CFR 35.615(f)(3). No specific action or written response is required. BACKGROUND In March 2005, during a licensing visit to a GSR facility, the NRC staff observed that the authorized medical physicist (AMP) did not remain physically present throughout one of the GSR treatments, as required by 10 CFR 35.615(f)(3). Instead, during the treatment, the AMP walked to the other end of the GSR suite and entered a treatment planning room located more than 30.5 meters (100 feet) away from the GSR treatment console. While discussing this incident with the licensee, the NRC staff recognized that the licensee was misinterpreting the physical presence requirement for GSR treatments. Based on the licensee’s interpretation of the regulations, the licensee considered any location within the GSR suite, including the treatment planning room, to be within hearing distance of normal voice from the GSR treatment console. The licensee believed that, within the contiguous boundary of its GSR suite, the human voice has sufficient volume, without electronic amplification, to alert the AMP of an emergency at essentially any location within its suite and the AMP could respond in a timely manner. -
The Impact of County-Level Radiation Oncologist Density on Prostate Cancer Mortality in the United States
Prostate Cancer and Prostatic Diseases (2012) 15, 391 -- 396 & 2012 Macmillan Publishers Limited All rights reserved 1365-7852/12 www.nature.com/pcan ORIGINAL ARTICLE The impact of county-level radiation oncologist density on prostate cancer mortality in the United States S Aneja1 and JB Yu1,2,3 BACKGROUND: The distribution of radiation oncologists across the United States varies significantly among geographic regions. Accompanying these variations exist geographic variations in prostate cancer mortality. Prostate cancer outcomes have been linked to variations in urologist density, however, the impact of geographic variation in the radiation oncologist workforce and prostate cancer mortality has yet to be investigated. The goal of this study was to determine the effect of increasing radiation oncologist density on regional prostate cancer mortality. METHODS: Using county-level prostate cancer mortality data from the National Cancer Institute and Centers for Disease Control as well as physician workforce and health system data from the Area Resource File a regression model was built for prostate cancer mortality controlling for categorized radiation oncologist density, urologist density, county socioeconomic factors and pre-existing health system infrastructure. RESULTS: There was statistically significant reduction in prostate cancer mortality (3.91--5.45% reduction in mortality) in counties with at least 1 radiation oncologist compared with counties lacking radiation oncologists. However, increasing the density of radiation oncologists beyond 1 per 100 000 residents did not yield statistically significant incremental reductions in prostate cancer mortality. CONCLUSIONS: The presence of at least one radiation oncologist is associated with significant reductions in prostate cancer mortality within that county. However, the incremental benefit of increasing radiation oncologist density exhibits a plateau effect providing marginal benefit. -
Radiosurgery Or Fractionated Stereotactic Radiotherapy Plus Whole-Brain Radioherapy in Brain Oligometastases: a Long-Term Analysis
ANTICANCER RESEARCH 35: 3055-3060 (2015) Radiosurgery or Fractionated Stereotactic Radiotherapy plus Whole-brain Radioherapy in Brain Oligometastases: A Long-term Analysis MARIO BALDUCCI1, ROSA AUTORINO1, SILVIA CHIESA1, GIANCARLO MATTIUCCI1, ANGELO POMPUCCI2, LUIGI AZARIO3, GIUSEPPE ROBERTO D’AGOSTINO1, MILENA FERRO1, ALBA FIORENTINO1, SERGIO FERSINO1, CIRO MAZZARELLA1, CESARE COLOSIMO4, VINCENZO FRASCINO1, CARMELO ANILE2 and VINCENZO VALENTINI1 Departments of 1Radiation Oncology, 2Neurosurgery, 3Physics and 4Radiology, Catholic University of the Sacred Heart, Rome, Italy Abstract. Aim: To analyze the outcome of patients with number, size, location, the patient’s Karnofsky performance brain oligometastases treated by radiosurgery (SRS) or status (KPS), age, extent of systematic disease and primary fractionated stereotactic radiotherapy (FSRT) after whole- disease status (4, 5). brain radiotherapy (WBRT). Patients and Methods: Overall Patients with one or two brain metastases and with survival (OS) and local control (LC) were evaluated in favorable prognostic features have a relatively favorable patients (patients) with 1-2 brain metastases. Results: Forty- survival; thus, the treatment is frequently more aggressive seven patients were selected. They were submitted to WBRT than for patients with multiple brain metastases (5). (median dose=3,750 cGy) followed by SRS (17 patients; Radiosurgery (SRS) delivered as a single fraction to median dose=1,500 cGy) or FSRT (30 patients; median individual intracranial lesions has been the most common dose=2,000 cGy). Median follow-up was 102 months technique used to dose-escalate on lesions following whole (range=17-151); the median survival was 22 months for the brain radiotherapy (WBRT) and considered as safe SRS group and 16 months for the FSRT group.